WASSERSTEIN PAC-BAYES LEARNING: ON THE INTRICATIONS BETWEEN GENERALISATION AND OPTIMISATION

Maxime Haddouche
INRIA Lille, MODAL Project-Team
Cinúa

Tuesday $12^{\text {th }}$ September, 2023

1. Introduction
2. Wasserstein PAC-Bayes to intricate generalisation and optimisation
3. Towards practical performances

INTRO: BATCH LEARNING

Figures extracted from Paul Viallard's slides.

Example of supervised classification task: Predict if an image contains a cat or a horse

GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample?
0 error!

generalization bounds in batch Learning

How many errors on the learning sample? 0 error!

How many errors on new examples? 3 errors...

GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample? 0 error!

How many errors on new examples? 3 errors. . .

Can we have guarantees on the number of errors on new examples?

Generalization Bounds

true risk(pred) \leq empirical risk(pred) + complexity(pred, number of examples)

WHAT IS PAC-BAYES LEARNING?

- A branch of learning theory providing generalisation bounds
- Emerged in the late 90s with the works of Shawe-Taylor et al. (1997) and McAllester (1998, 1999).
- Recently proposed non-vacuous generalisation bounds valid during neural nets (NNs) training phase (no test set) (Dziugaite et al., 2017)

For more details see the recent surveys of:
1 Alquier (2021): https://arxiv.org/abs/2110.11216
2 Guedj (2019): https://arxiv.org/abs/1901. 05353

BASIC SETTING

Setting:

- Model/predictor $h \in \mathcal{H}$, Data space \mathcal{Z}
- Loss function $\ell: \mathcal{H} \times \mathcal{Z} \rightarrow[0,1]$
- m-sized learning sample $\mathcal{S} \in \mathcal{Z}^{m}, \mathcal{S}:=\left\{\mathbf{z}_{i}\right\}_{i=1}^{m} \sim \mu^{m}$
- True risk $\mathrm{R}_{\mu}(h)=\mathbb{E}_{\mathbf{z} \sim \mu} \ell(h, \mathbf{z})$ and empirical risk $\mathrm{R}_{\mu}(h)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(h, \mathbf{z}_{i}\right)$
- Space of distributions over $\mathcal{H}: \mathcal{M}(\mathcal{H})$
- PAC-Bayes: learning a posterior $\mathrm{Q} \in \mathcal{M}(\mathcal{H})$ from a prior $\mathrm{P} \in \mathcal{M}(\mathcal{H})$

PAC-BAYESIAN BOUND IN BATCH LEARNING

McAllester's bound (Shawe-Taylor et al., 1997; McAllester, 1998; Maurer, 2004)
For any prior P on \mathcal{H}, for any $\delta \in(0,1]$, we have with probability at least $1-\delta$ over $\mathcal{S} \sim \mu^{m}$ for all $\mathrm{Q} \in \mathcal{M}(\mathcal{H})$

$$
\underset{h \sim Q}{\mathbb{E}}\left[\mathrm{R}_{\mu}(h)\right] \leq \underset{h \sim \mathrm{Q}}{\mathbb{E}}\left[\mathrm{R}_{\mathcal{S}}(h)\right]+\sqrt{\frac{1}{2 m}\left[\mathrm{KL}(\mathrm{Q} \| \mathrm{P})+\ln \frac{2 \sqrt{m}}{\delta}\right]}
$$

where $\mathrm{KL}(\mathrm{Q} \| \mathrm{P})=\mathbb{E}_{h \sim \mathrm{Q}} \ln \left(\frac{d \mathrm{Q}}{d \mathrm{P}}(h)\right)$

PAC-BAYESIAN BOUND IN BATCH LEARNING

McAllester's bound (Shawe-Taylor et al., 1997; McAllester, 1998; Maurer, 2004)
For any prior P on \mathcal{H}, for any $\delta \in(0,1]$, we have with probability at least $1-\delta$ over $\mathcal{S} \sim \mu^{m}$ for all $\mathrm{Q} \in \mathcal{M}(\mathcal{H})$

$$
\underset{h \sim \mathrm{Q}}{\mathbb{E}}\left[\mathrm{R}_{\mu}(h)\right] \leq \underset{h \sim \mathrm{Q}}{\mathbb{E}}\left[\mathrm{R}_{\mathcal{S}}(h)\right]+\sqrt{\frac{1}{2 m}\left[\mathrm{KL}(\mathrm{Q} \| \mathrm{P})+\ln \frac{2 \sqrt{m}}{\delta}\right]}
$$

where $\mathrm{KL}(\mathrm{Q} \| \mathrm{P})=\mathbb{E}_{h \sim \mathrm{Q}} \ln \left(\frac{d \mathrm{Q}}{d \mathrm{P}}(h)\right)$

- No explicit dependency in the dimension of the problem (potentially hidden in the KL term): potential tight bounds in practice (Dziugaite et al., 2017, 2018; Pérez-Ortiz et al., 2021).
- Right-hand side is fully empirical

A SIMPLE ROUTE OF PROOF

Step 1: A key ingredient: change of measure inequality

For any function f, any $Q \ll P$:

$$
\underset{h \sim Q}{\mathbb{E}}[f(h)]-\ln (\underset{h \sim P}{\mathbb{E}}[\exp \circ f(h)]) \leq K L(Q, P) .
$$

A SIMPLE ROUTE OF PROOF

Step 1: A key ingredient: change of measure inequality

For any function f, any $Q \ll P$:

$$
\underset{h \sim Q}{\mathbb{E}}[f(h)]-\ln (\underset{\sim \sim P}{\mathbb{E}}[\exp \circ f(h)]) \leq \mathrm{KL}(\mathrm{Q}, \mathrm{P}) .
$$

Step 2: Markov's inequality

With probability at least $1-\delta$:

$$
\begin{aligned}
\underset{h \sim P}{\mathbb{E}}[\exp \circ f(h)] & \leq \frac{1}{\delta} \underset{\mathcal{S}}{\mathbb{E}}[\underset{h \sim P}{\mathbb{E}}[\exp \circ f(h)]], \\
& =\frac{1}{\delta} \underset{h \sim P}{\mathbb{E}}[\underset{\mathcal{S}}{\mathbb{E}}[\exp \circ f(h)]] .
\end{aligned}
$$

(P data-free + Fubini)

A SIMPLE ROUTE OF PROOF (2)

Step 3: Choosing the right f.

Take $f\left((h)=m \mathrm{kl}\left(\mathrm{R}_{\mu}(h), \mathrm{R}_{\mathcal{S}}(h)\right)\right.$ (kl= KL of Bernoullis).
Then Maurer (2004): for any h, loss in [0, 1]:

$$
\underset{\mathcal{S}}{\mathbb{E}}[\exp \circ f(h)] \leq 2 \sqrt{m}
$$

To conclude: $\mathrm{kl}(p, q) \geq 2(p-q)^{2}$.

TOWARDS PRACTICAL ALGORITHMS

High-probability PAC-Bayes bound = Generalisation-driven learning algorithm.

Catoni's PAC-Bayes algorithm (Alquier et al., 2016, Theorem 4.1 subgaussian case): for $\lambda>0$,

$$
\mathrm{Q}^{*}:=\operatorname{argmin}_{\mathrm{Q}} \underset{h \sim \mathrm{Q}}{\mathbb{E}}\left[\mathrm{R}_{\mathcal{S}}(h)\right]+\frac{\mathrm{KL}(\mathrm{Q} \| \mathrm{P})}{\lambda}
$$

which leads to the explicit formulation of the Gibbs posterior $Q^{*}:=P_{-\lambda R_{\mathcal{S}}}$:

$$
\frac{d \mathrm{Q}^{*}}{d \mathrm{P}}(h)=\frac{\exp \left(-\lambda \mathrm{R}_{\mathcal{S}}(h)\right)}{\mathbb{E}_{h \sim P}\left[\exp \left(-\lambda \mathrm{R}_{\mathcal{S}}(h)\right)\right]} .
$$

STRENGTHS OF PAC-BAYES

- Various PAC-Bayes algorithms can be derived and successfully applied to Stochastic NNs (Pérez-Ortiz et al., 2021).
- PAC-Bayes is flexible enough to encompass various learning situations (bandits, reinforcement/online/meta/lifelong learning)
- PAC-Bayes holds for heavy-tailed losses (not only bounded/subgaussians) (Chugg et al., 2023; Haddouche et al., 2023a).

STRENGTHS OF PAC-BAYES

- Various PAC-Bayes algorithms can be derived and successfully applied to Stochastic NNs (Pérez-Ortiz et al., 2021).
- PAC-Bayes is flexible enough to encompass various learning situations (bandits, reinforcement/online/meta/lifelong learning)
- PAC-Bayes holds for heavy-tailed losses (not only bounded/subgaussians) (Chugg et al., 2023; Haddouche et al., 2023a).

A major issue

Use of KL= impossible to consider Dirac measures (deterministic predictors)

WASSERSTEIN DISTANCE

Amit et al. (2022): replace KL divergence by Integral Probability Metrics. In particular: 1-Wasserstein is an IPM

Wasserstein distance

Given distance $d: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$ and a Polish space (\mathcal{A}, d), for any probability measures Q and P on \mathcal{A}, the Wasserstein distance is defined by

$$
\mathrm{W}_{1}(\mathrm{Q}, \mathrm{P}):=\inf _{\gamma \in \Gamma(\mathrm{Q}, \mathrm{P})}\{\underset{(a, b) \sim \gamma}{\mathbb{E}} d(a, b)\}
$$

where $\Gamma(\mathrm{Q}, \mathrm{P})$ is the set of joint probability measures $\gamma \in \mathcal{M}\left(\mathcal{A}^{2}\right)$ such that the marginals are Q and P.

WASSERSTEIN DISTANCE

Amit et al. (2022): replace KL divergence by Integral Probability Metrics. In particular: 1 -Wasserstein is an IPM

Wasserstein distance

Given distance $d: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$ and a Polish space (\mathcal{A}, d), for any probability measures Q and P on \mathcal{A}, the Wasserstein distance is defined by

$$
\mathrm{W}_{1}(\mathrm{Q}, \mathrm{P}):=\inf _{\gamma \in \Gamma(\mathrm{Q}, \mathrm{P})}\{\underset{(a, b) \sim \gamma}{\mathbb{E}} d(a, b)\}
$$

where $\Gamma(\mathrm{Q}, \mathrm{P})$ is the set of joint probability measures $\gamma \in \mathcal{M}\left(\mathcal{A}^{2}\right)$ such that the marginals are Q and P.

Such a distance allows considering Dirac distributions, \mathbf{W}_{1} reduces to d in this case.

REPLACING THE CHANGE OF MEASURE INEQUALITY

Kantorovich-Rubinstein duality
For any 1-Lipschitz function f :

$$
W_{1}(Q, P) \geq \underset{h \sim Q}{\mathbb{E}}[f(h)]-\underset{h \sim P}{\mathbb{E}}[f(h)]
$$

REPLACING THE CHANGE OF MEASURE INEQUALITY

Kantorovich-Rubinstein duality

For any 1-Lipschitz function f :

$$
W_{1}(Q, P) \geq \underset{h \sim Q}{\mathbb{E}}[f(h)]-\underset{h \sim P}{\mathbb{E}}[f(h)]
$$

- This duality acts as a surrogate of change of measure for 1-Lipschitz functions
- Using it, Amit et al. (2022) recovered a McAllester-typed bound for finite classes of predictors.

REPLACING THE CHANGE OF MEASURE INEQUALITY

Kantorovich-Rubinstein duality

For any 1-Lipschitz function f :

$$
W_{1}(Q, P) \geq \underset{h \sim Q}{\mathbb{E}}[f(h)]-\underset{h \sim P}{\mathbb{E}}[f(h)]
$$

- This duality acts as a surrogate of change of measure for 1-Lipschitz functions
- Using it, Amit et al. (2022) recovered a McAllester-typed bound for finite classes of predictors.

1 Can we obtain high probability Wasserstein PAC-Bayes bounds (WPB) for infinite classes of predictors?
2 Are the geometric properties of the Waserstein useful in learning theory?
3 Can we obtain new generalisation-driven learning algorithms based on W_{1} ?

PRESENTATION OF THE RESULTS

1 We obtain WPB bounds for infinite classes of predictors with a classical convergence rate $\mathcal{O}(1 / \sqrt{m})$ at the cost of the curse of dimensionality. (Haddouche et al., 2023b)
\mapsto Asymptotic yet interpretable guarantees
2 We show that it is possible to exploit the geometric convergence guarantees of the Bures-Wasserstein SGD to explain its generalisation ability (Haddouche et al., 2023b)
3 We derive efficient learning algorithms from a WPB bound not implying the dimension at the cost of no explicit convergence rate. (Viallard et al., 2023)

A LINK BETWEEN GENERALISATION AND OPTIMISATION

WPB bound with
euclidean predictor space
and lipschitz loss

Residual of Euler's Gamma function

WPB bound with
euclidean predictor space
and convex smooth loss

WPB bound with compact predictor space and bounded loss

Optimal transport and statistics

Lipschitzness Convexity Smoothness

Residual of Euter's
Gamma function

Optimisation

BEYOND KANTOROVICH-RUBINSTEIN DUALITY

Finite \mathcal{H} : Kantorovich-Rubinstein duality enough to obtain a sample-sized dependent lipschitz constant on f appearing (in the PB proof)

BEYOND KANTOROVICH-RUBINSTEIN DUALITY

Finite \mathcal{H} : Kantorovich-Rubinstein duality enough to obtain a sample-sized dependent lipschitz constant on f appearing (in the PB proof)
Such a property is not retrievable for infinite \mathcal{H}, need to find another tool

BEYOND KANTOROVICH-RUBINSTEIN DUALITY

Finite \mathcal{H} : Kantorovich-Rubinstein duality enough to obtain a sample-sized dependent lipschitz constant on f appearing (in the PB proof)
Such a property is not retrievable for infinite \mathcal{H}, need to find another tool

Villani et al. (2009, Theorem 5.10)

Let (\mathcal{X}, Q) and (\mathcal{Y}, P) be two Polish probability spaces and let $c: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup$ $\{+\infty\}$ be a nonnegative lower semicontinuous cost function:
where $L_{1}(P)$ refers to the set of all functions integrable with respect to P and the condition $\phi-\psi \leq c$ means that for all $x, y \in \mathcal{X} \times \mathcal{Y}, \phi(y)-\psi(x) \leq c(x, y)$.

A WPB BOUND FOR COMPACT PREDICTOR SPACE

Villani et al. (2009, Theorem 5.10) with $c_{\varepsilon}(x, y)=\|x-y\|+\varepsilon \rightarrow \mathrm{W}_{\varepsilon}=\mathrm{W}_{1}+\varepsilon$ This + covering number tricks and PB route of proof gives a bound on the generalisation gap $\Delta_{S}(\mathrm{Q})=\mathbb{E}_{h \sim \mathrm{Q}}\left[\mathrm{R}_{\mu}(h)-\mathrm{R}_{\mathcal{S}}(h)\right]$:

A WPB BOUND FOR COMPACT PREDICTOR SPACE

Villani et al. (2009, Theorem 5.10) with $c_{\varepsilon}(x, y)=\|x-y\|+\varepsilon \rightarrow \mathrm{W}_{\varepsilon}=\mathrm{W}_{1}+\varepsilon$ This + covering number tricks and PB route of proof gives a bound on the generalisation gap $\Delta_{S}(\mathrm{Q})=\mathbb{E}_{h \sim \mathrm{Q}}\left[\mathrm{R}_{\mu}(h)-\mathrm{R}_{\mathcal{S}}(h)\right]$:

Theorem

For any $\delta>0$, assume that $\ell \in[0,1]$ is K-Lipschitz wrt to h and that \mathcal{H} is a compact of \mathbb{R}^{d} bounded in norm by R. Let $P \in \mathcal{P}_{1}(\mathcal{H})$ a (data-free) prior distribution. Then, with probability $1-\delta$, for any posterior distribution $\mathrm{Q} \in \mathcal{P}_{1}(\mathcal{H})$:

$$
\left|\Delta_{S}(\mathrm{Q})\right| \leq \sqrt{2 K(2 K+1) \frac{2 d \log \left(3 \frac{1+2 R m}{\delta}\right)}{m}\left(W_{1}(\mathrm{Q}, \mathrm{P})+\varepsilon_{m}\right)+\frac{\log \left(\frac{3 m}{\delta}\right)}{m}}
$$

with $\varepsilon_{m}=\mathcal{O}(1+\sqrt{d \log (R m) / m})$.

ADDITIONAL BACKGROUND

- From now, $\mathcal{H}=\mathbb{R}^{d}$.
- $C_{\alpha, \beta, M}:=\left\{\mathcal{N}(m, \Sigma) \in \operatorname{BW}\left(\mathbb{R}^{d}\right) \mid\|m\| \leq M, \alpha \operatorname{Id} \preceq \Sigma \preceq \beta \operatorname{Id}\right\}$.

ADDITIONAL BACKGROUND

- From now, $\mathcal{H}=\mathbb{R}^{d}$.
- $C_{\alpha, \beta, M}:=\left\{\mathcal{N}(m, \Sigma) \in \operatorname{BW}\left(\mathbb{R}^{d}\right) \mid\|m\| \leq M, \alpha \operatorname{Id} \preceq \Sigma \preceq \beta \operatorname{Id}\right\}$.

Two sets of assumptions

- (A1) ℓ is uniformly K-Lipschitz over \mathcal{H} : for all $z, h \rightarrow \ell(h, z)$ is K-lipschitz, and $\sup _{z \in \mathcal{Z}}\|\ell(0, z)\|=D<+\infty$.
- (A2) For any $z \in \mathcal{Z}, \ell(., z)$ is continuously differentiable over $\mathcal{H}, \ell(., z)$ is also a convex L - smooth (i.e, its gradient is L-Lipschitz) and $\sup _{z \in \mathcal{Z}}\left\|\nabla_{h} \ell(0, z)\right\|=$ $D<+\infty$.

Boundedness assumption is no longer required!

WPB BOUNDS FOR GAUSSIAN DISTRIBUTIONS

Theorem

Assume that $d \geq 3, \mathcal{H}=\mathbb{R}^{d}$ and that the (unbounded) loss satisfies (A1). For any $\delta>0,0 \leq \alpha \leq \beta, M \geq 0$, let $\mathrm{P} \in C_{\alpha, \beta, M}$ a (data-free) prior distribution. Then, with probability $1-\delta$, for any posterior distribution $\mathrm{Q} \in C_{\alpha, \beta, M}$, the following bound holds.
Asymptotic regime $(d \log (d)<\log (m)$)

$$
\left|\Delta_{S}(\mathrm{Q})\right| \leq \tilde{\mathcal{O}}\left(\sqrt{2 K \frac{d}{m}\left(1+W_{1}(\mathrm{Q}, \mathrm{P})\right)+\left(1+K^{2} \log (m)\right) \frac{\log \left(\frac{m}{\delta}\right)}{m}}\right)
$$

In all these formulas, $\tilde{\mathcal{O}}$ hides a polynomial dependency in $(\log (d), \log (m))$.

WPB BOUNDS FOR GAUSSIAN DISTRIBUTIONS (2)

Under (A2), a similar bound can be reached (see Haddouche et al., 2023b)

WPB BOUNDS FOR GAUSSIAN DISTRIBUTIONS (2)

Under (A2), a similar bound can be reached (see Haddouche et al., 2023b)

Tradeoff

Trading lipschitzness for smoothness has a cost: no constant K attenuating the impact of the dimension anymore.

TAKE-HOME MESSAGES

1 Bounds for low-data regime ($d \leq m$) and transitory regime ($m>d, d \log (d) \geq \log (m)$) are also available in the paper \rightarrow worse dependencies in the dimension.
2 The Lipschitz constant attenuates the impact of the dimension.
3 PAC-Bayes with KL: statistical assumptions (e.g. boundedness). WPB involves geometric ones.

WPB WITH DATA-DEPENDENT PRIORS

Limitation

PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution we target?

WPB WITH DATA-DEPENDENT PRIORS

Limitation

PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution we target?

Yes if the target is differentially private. Dziugaite et al. (2018) exploited that, when $\ell \in[0,1]$, the Gibbs posterior is differentially private.

WPB WITH DATA-DEPENDENT PRIORS

Limitation

PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution we target?

Yes if the target is differentially private. Dziugaite et al. (2018) exploited that, when $\ell \in[0,1]$, the Gibbs posterior is differentially private.

For lipschitz unbounded losses, it is possible to obtain a similar asymptotic bound than the Gaussian one by replacing the Gaussian prior P with the Gibbs posterior $Q^{*}=P_{-\frac{\lambda}{2 K}}$

THE BURES-WASSERSTEIN SGD

A variational inference algorithm

Goal: find Q the best Gaussian approximation of $Q^{*}:=P_{-\frac{\lambda}{2 K}} R_{\mathcal{S}}$.

```
Algorithm 1: Bures-Wasserstein SGD.
    Parameters : Strong convexity parameter \(\alpha>0\), radius \(M>0\); step size \(\eta>0\),
                initial mean \(m_{0}\), initial covariance \(\Sigma_{0}\)
    1 Set up \(\hat{Q}_{0}=\mathcal{N}\left(m_{0}, \Sigma_{0}\right)\).
    2 for \(k=0 . . N-1\) do
    3 Draw a sample \(X_{k} \sim \hat{Q}_{k}\).
        Set \(m_{k}^{+}=m_{k}-\eta \nabla V_{S}\left(X_{k}\right)\).
        Set \(M_{k}=I-\eta\left(\nabla V^{2}\left(X_{k}\right)-\Sigma_{k}^{-1}\right)\).
        Set \(\Sigma_{k}^{+}=M_{k} \Sigma_{k} M_{k}\).
        Set \(m_{k+1}=\mathcal{P}_{M}\left(m_{k}^{+}\right), \Sigma_{k+1}=\operatorname{clip}^{1 / \alpha} \Sigma_{k}^{+}\).
        Set \(\hat{Q}_{k+1}=\mathcal{N}\left(m_{k+1}, \Sigma_{k+1}\right)\)
    9 end
10 Return \(\left(\hat{Q}_{k}\right)_{k=1 \ldots N}\).
```


THE BURES-WASSERSTEIN SGD (2)

Theorem

Assume having a smooth convex loss with a log-strongly convex prior. Under technical assumptions on η, \hat{Q}_{0}, Bures-Wasserstein SGD satisfies for all $k \in \mathbb{N}$,

$$
\mathbb{E} W_{2}^{2}\left(\hat{Q}_{k}, \hat{\mathrm{Q}}\right) \leq \exp (-\alpha k \eta) W_{2}^{2}\left(\hat{Q}_{0}, \hat{\mathrm{Q}}\right)+\frac{36 d \eta}{\alpha^{2}}
$$

In particular, $\mathbb{E} W_{2}^{2}\left(\hat{Q}_{k}, \hat{Q}\right) \leq \varepsilon^{2}$ with suitable η, k.

BURES-WASSERSTEIN SGD GENERALISES!

Main assumptions (see Haddouche et al. (2023b) for technical ones

(A3): $\mathcal{H}=\mathbb{R}^{d} \ell$ is twice differentiable, L-smooth, convex and uniformly K Lipschitz over \mathcal{H}.
$\mathrm{P}=\mathcal{N}(0, \Sigma)$ with $\Sigma=\operatorname{diag}(\gamma), 1 \geq \gamma>0$. Also $\lambda \leq 2 K$ in the definition of Q^{*}.

Theorem (informal)

Assume (A3), $d \geq 3$. Let $\beta_{m}=\mathcal{O}(1 / \sqrt{m})$ and fix any $\beta_{m}<\delta<1$. Bures-Wasserstein SGD, with adapted initialisation and parameters η, N satisfies, with probability $1-2 \delta$:
Asymptotic regime $(d \log (d)<\log (m))$

$$
\left|\Delta_{S}\left(\hat{Q}_{N}\right)\right| \leq \tilde{\mathcal{O}}\left(\sqrt{2 K \frac{d}{m}\left(1+W_{1}\left(\hat{Q}, Q^{*}\right)\right)+\left(1+K^{2} \log (m)\right) \frac{\log \left(\frac{m}{\delta}\right)}{m}}\right)
$$

where $\tilde{\mathcal{O}}$ hides a polynomial dependency in $(\log (d), \log (m))$.

CONCLUSION

Take-home messages

- Geometric optimisation guarantees are useful to explain generalisation
- Gaussian approximations are costful (if not well-suited) for generalisation.
- A good Lipschitz constant can compensate the impact of dimensionality

CONCLUSION

Take-home messages

- Geometric optimisation guarantees are useful to explain generalisation
- Gaussian approximations are costful (if not well-suited) for generalisation.
- A good Lipschitz constant can compensate the impact of dimensionality

What is next?

- Our WPB bounds suffers from the explicit impact of the dimension. Can we avoid it, as in classical PAC-Bayes?
- Can we relax the Lipschitzness assumption? It was crucial for differential privacy, but might be replaced elsewhere (e.g. by smoothness).
- 2-Wasserstein distance catches more efficiently the geometry of the predictor space, could we avoid the use of the Kantorovich-Rubinstein duality to directly exploit this distance instead of using W_{1} as intermediary?

TOWARDS PRACTICAL PERFORMANCES

Previous results are meaningful asymptotically because of the impact of dimension. Can we remove this constraint?

TOWARDS PRACTICAL PERFORMANCES

Previous results are meaningful asymptotically because of the impact of dimension. Can we remove this constraint?

Yes! At the cost of no explicit convergence rate.

TOWARDS PRACTICAL PERFORMANCES

Previous results are meaningful asymptotically because of the impact of dimension. Can we remove this constraint?

Yes! At the cost of no explicit convergence rate.

Various advantages

- No explicit dimension term
- Allows easily heavy-tailed losses
- Allows easily non-iid data

WPB BOUND FOR HEAVY-TAILED DATA AND DATA-DEPENDENT PRIORS

Idea: split \mathcal{S} into L parts $\mathcal{S}_{1}, \ldots, \mathcal{S}_{L}$ and exploit supermartingale techniques.

Assumptions:

- ℓ is non-negative and K-Lipschitz
- for any $1 \leq i \leq L, \mathcal{S}, \mathbb{E}_{h \sim P_{i}(., \mathcal{S}), z \sim \mu}\left[\ell(h, z)^{2}\right] \leq 1$
- Prior $\mathrm{P}_{i, \mathcal{S}}$ depend on $\mathcal{S} / \mathcal{S}_{i}$.

Theorem

For any $\delta \in(0,1]$, with probability at least $1-\delta$ over the sample \mathcal{S}, the following holds for the distributions $\mathrm{P}_{i, \mathcal{S}}:=\mathrm{P}_{i}(\mathcal{S},$.$) and for any \mathrm{Q} \in \mathcal{M}(\mathcal{H})$:

$$
\underset{h \sim \mathrm{Q}}{\mathbb{E}}\left[\mathrm{R}_{\mu}(h)-\hat{\mathrm{R}}_{\mathcal{S}}(h)\right] \leq \sum_{i=1}^{L} \frac{2\left|\mathcal{S}_{i}\right| K}{m} \mathrm{~W}\left(\mathrm{Q}, \mathrm{P}_{i, \mathcal{S}}\right)+\sum_{i=1}^{L} \sqrt{\frac{\left|\mathcal{S}_{i}\right| \ln \frac{L}{\delta}}{m^{2}}}
$$

where $\mathrm{P}_{i, \mathcal{S}}$ does not depend on \mathcal{S}_{i}.

ONLINE COUNTERPART FOR NON IID DATA

Remark

The previous bound if vacuous if $K=m$ (online setting)

ONLINE COUNTERPART FOR NON IID DATA

Remark

The previous bound if vacuous if $K=m$ (online setting)

Solution

The same set of technique allows a refined bound for online learning (see Viallard et al., 2023, Theorems 3\&4)

Why is it great?

- Zero assumption about the data distribution
- Still valid for heavy tailed losses
- Consider a sequence of priors/posteriors \rightarrow more flexible.

NEW OPTIMISATION GOALS

Batch

$$
\operatorname{argmin}_{h_{\mathbf{w}} \in \mathcal{H}}\left\{\hat{\mathrm{R}}_{\mathcal{S}}\left(h_{\mathbf{w}}\right)+\varepsilon\left[\sum_{i=1}^{K} \frac{\left|\mathcal{S}_{i}\right|}{m}\left\|\mathbf{w}-\mathbf{w}_{i}\right\|_{2}\right]\right\} .
$$

$$
\begin{array}{r}
\forall i \geq 1, \quad h_{i} \in \operatorname{argmin}_{h_{\mathbf{w}} \in \mathcal{H}} \ell\left(h_{\mathbf{w}}, \mathbf{z}_{i}\right)+\left\|\mathbf{w}-\mathbf{w}_{i-1}\right\| \\
\text { s.t. }\left\|\mathbf{w}-\mathbf{w}_{i-1}\right\| \leq 1 .
\end{array}
$$

EXPERIMENTS

Classification problem on MNIST solved with linear models and fully connected neural networks.

(a) Linear model - batch learning

Dataset	$\left\lvert\, \begin{gathered} \text { Alg. } 1\left(\frac{1}{m}\right) \\ \mathfrak{R}_{\mathcal{S}}(h) \mathfrak{R}_{\mu}(h) \mid \end{gathered}\right.$		Alg. $1\left(\frac{1}{\sqrt{m}}\right)$		ERM		
			$\mid r_{\mathcal{S}}(h)$	$\Re_{\mu}(h)$	$\mid \Re_{s}$	$\Re_{\mu}(h) \\|$	
ADULT	. 165	. 166	. 165	. 167	. 166	. 167	
FASHIONMNIST	. 128	. 151	. 126	. 148	. 139	. 153	
Letter	. 285	. 297	. 287	. 296	. 287	. 297	
MNIST	. 200	. 216	. 066	. 092	. 065	. 091	
MUSHROOMS	. 001	. 001	. 001	. 001	. 001	. 001	
NURSERY	. 766	. 773	. 760	. 773	. 794	. 807	
PENDIGITS	. 049	. 059	. 050	. 061	. 052	. 064	
PHISHING	. 063	. 067	. 065	. 069	. 064	. 067	
Satimage	. 144	. 200	. 138	. 201	. 148	. 209	
SEGMENTATION	. 057	. 216	. 164	. 386	. 087	. 232	
SENSORLESS	. 129	. 129	. 131	. 131	. 134	. 136	
tictactoe	. 388	. 299	. 013	. 021	. 228	. 238	
YEAST	. 527	. 497	. 524	. 504	. 470	. 427	

(c) NN model - batch learning

Dataset	Alg. $1\left(\frac{1}{m}\right)$		Alg. $1\left(\frac{1}{\sqrt{m}}\right)$		ERM		
	$\mathfrak{R}_{\mathcal{S}}(h)$	$\mathfrak{R}_{\mu}(h) \mid$	$\mid \mathfrak{R}_{\mathcal{S}}(h)$	$\Re_{\mu}(h)$	$\mid \Re_{\mathcal{S}}(h)$	$\Re_{\mu}(h) \\|$	
ADULT	. 164	. 164	. 166	. 165	. 165	. 163	
FASHIONMNIST	. 159	. 163	. 156	. 160	. 163	. 167	
LETTER	. 259	. 272	. 250	. 260	. 258	. 270	
MNIST	. 112	. 120	. 084	. 094	. 119	. 127	
MUSHROOMS	. 000	. 000	. 000	. 000	. 000	. 000	
NURSERY	. 706	. 719	. 706	. 719	. 706	. 719	
pendigits	. 009	. 023	. 021	. 032	. 009	. 022	
PHISHING	. 042	. 050	. 039	. 054	. 046	. 055	
satimage	. 132	. 184	. 149	. 172	. 141	. 189	
SEGMENTATION	. 145	. 250	. 189	. 373	. 174	. 389	
SENSORLESS	. 076	. 079	. 077	. 079	. 075	. 078	
tictactoe	. 392	. 301	. 000	. 038	. 000	. 023	
YEAST	. 679	. 666	. 487	. 478	. 644	. 682	

(b) Linear model - online learning

Alg. 2	OGD
$\mathfrak{E}_{\mathcal{S}} \quad \mathfrak{e}_{\mu}$	$\mathfrak{E}_{\mathcal{S}} \mathfrak{E}_{\mu}$
\| 230.236	. 248.248
. 223.282	. 540.548
. 919.935	. 916.926
. 284.310	. 378.397
. 218.222	. 082.087
. 794.807	. 789.805
. 342.484	. 589.600
. 226.242	. 226.220
. 669.938	. 635.888
. 749.803	. 738.893
. 906.910	. 825.830
. 443.468	. 390.303
. 699.713	. 667.708

(d) NN model - online learning

Alg. 2	OGD
$\mathfrak{e}_{\mathcal{S}} \quad \mathfrak{e}_{\mu}$	$\mathfrak{E}_{\mathcal{S}} \quad \mathfrak{E}_{\mu}$
\| $.241 .254 \mid$. 248.248
. 096.327	. 397.446
. 829.945	. 958.963
. 092.265	. 470.521
. 082.122	. 202.217
. 800.805	. 793.806
. 323.537	. 871.879
. 164.222	. 331.318
. 401.763	. 626.857
. 619.857	. 739.913
. 899.910	. 622.633
. 388.309	. 397.309
. 662.720	. 702.720

Thank you for your attention!
 Questions?

REFERENCES

E John Shawe-Taylor and Robert Williamson. A PAC Analysis of a Bayesian Estimator. COLT. (1997).
David McAllester. Some PAC-Bayesian Theorems. COLT. (1998).
囯 David McAllester. Some PAC-Bayesian Theorems. Machine Learning. (1999).
庫 Andreas Maurer. A Note on the PAC Bayesian Theorem. CoRR. Cs.LG/0411099. (2004).
Cédric Villani et al. Optimal transport: old and new. Vol. 338. Springer. (2009).
Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approximations of Gibbs posteriors. Journal of Machine Learning Research. (2016).

R Gintare Karolina Dziugaite and Daniel Roy. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. UAI. (2017).

REFERENCES

嗇 Gintare Karolina Dziugaite and Daniel Roy. Data-dependent PAC-Bayes priors via differential privacy. NeurIPS. (2018).

E- Benjamin Guedj. A Primer on PAC-Bayesian Learning. CoRR. abs/1901.05353. (2019).
(Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. CoRR. abs/2110.11216. (2021).

围 María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter Risk Certificates for Neural Networks. Journal of Machine Learning Research. (2021).

Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral Probability Metrics PAC-Bayes Bounds. Conference on Neural Information Processing Systems (NeurIPS). (2022).

Ben Chugg, Hongjian Wang, and Aaditya Ramdas. A unified recipe for deriving (time-uniform) PAC-Bayes bounds. CoRR. abs/2302.03421. (2023).

REFERENCES

囲 Maxime Haddouche and Benjamin Guedj. PAC-Bayes Generalisation Bounds for Heavy-Tailed Losses through Supermartingales. Transactions on Machine Learning Research. (2023).

目 Maxime Haddouche and Benjamin Guedj. Wasserstein PAC-Bayes Learning: A Bridge Between Generalisation and Optimisation. CoRR. abs/2304.07048. (2023).

E Paul Viallard, Maxime Haddouche, Umut Simsekli, and Benjamin Guedj. Learning via Wasserstein-Based High Probability Generalisation Bounds. arXiv preprint arXiv:2306.04375. (2023).

