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1. Introduction

2. Wasserstein PAC-Bayes to intricate generalisation and optimisation

3. Towards practical performances
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INTRO: BATCH LEARNING

Figures extracted from Paul Viallard’s slides.

Example of supervised classification task: Predict if an image contains a cat or a horse

Learning sample

Learning

Model
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GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample?
0 error!

How many errors on new examples?
3 errors. . .
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GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample?
0 error!

How many errors on new examples?
3 errors. . .

Can we have guarantees on the number of errors on new examples?

Generalization Bounds

true risk(pred) ≤ empirical risk(pred) + complexity(pred, number of examples)
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WHAT IS PAC-BAYES LEARNING?

• A branch of learning theory providing generalisation bounds
• Emerged in the late 90s with the works of Shawe-Taylor et al. (1997) and McAllester

(1998, 1999).
• Recently proposed non-vacuous generalisation bounds valid during neural nets

(NNs) training phase (no test set) (Dziugaite et al., 2017)

For more details see the recent surveys of:
1 Alquier (2021): https://arxiv.org/abs/2110.11216
2 Guedj (2019): https://arxiv.org/abs/1901.05353
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BASIC SETTING

Setting:
• Model/predictor h ∈ H, Data space Z
• Loss function ℓ : H×Z → [0, 1]

• m-sized learning sample S ∈ Zm, S := {zi}mi=1 ∼ µm

• True risk Rµ(h) = Ez∼µ ℓ(h, z) and empirical risk Rµ(h) = 1
m

∑m
i=1 ℓ(h, zi )

• Space of distributions over H: M(H)

• PAC-Bayes: learning a posterior Q ∈ M(H) from a prior P ∈ M(H)
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PAC-BAYESIAN BOUND IN BATCH LEARNING

McAllester’s bound (Shawe-Taylor et al., 1997; McAllester, 1998; Maurer, 2004)
For any prior P on H, for any δ ∈ (0, 1], we have with probability at least 1− δ over
S ∼ µm for all Q ∈ M(H)

E
h∼Q

[
Rµ(h)

]
≤ E

h∼Q

[
RS(h)

]
+

√
1

2m

[
KL(Q∥P) + ln

2
√
m

δ

]
where KL(Q∥P) = Eh∼Q ln

(
dQ
dP (h)

)

• No explicit dependency in the dimension of the problem (potentially hidden
in the KL term): potential tight bounds in practice (Dziugaite et al., 2017, 2018;
Pérez-Ortiz et al., 2021).

• Right-hand side is fully empirical
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A SIMPLE ROUTE OF PROOF

Step 1: A key ingredient: change of measure inequality

For any function f , any Q ≪ P:

E
h∼Q

[f (h)]− ln

(
E

h∼P
[exp ◦f (h)]

)
≤ KL(Q,P).

Step 2: Markov’s inequality

With probability at least 1− δ:

E
h∼P

[exp ◦f (h)] ≤ 1

δ
E
S

[
E

h∼P
[exp ◦f (h)]

]
,

=
1

δ
E

h∼P

[
E
S
[exp ◦f (h)]

]
. (P data-free + Fubini)
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A SIMPLE ROUTE OF PROOF (2)

Step 3: Choosing the right f .

Take f ((h) = m kl (Rµ(h),RS(h)) (kl= KL of Bernoullis).
Then Maurer (2004): for any h, loss in [0, 1]:

E
S
[exp ◦f (h)] ≤ 2

√
m

To conclude: kl(p, q) ≥ 2(p − q)2.
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TOWARDS PRACTICAL ALGORITHMS

High-probability PAC-Bayes bound = Generalisation-driven learning algorithm.

Catoni’s PAC-Bayes algorithm (Alquier et al., 2016, Theorem 4.1 subgaussian case):
for λ > 0,

Q∗ := argminQ E
h∼Q

[
RS(h)

]
+

KL(Q∥P)
λ

which leads to the explicit formulation of the Gibbs posterior Q∗ := P−λRS :

dQ∗

dP (h) =
exp (−λRS(h))

Eh∼P [exp (−λRS(h))]
.
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STRENGTHS OF PAC-BAYES

• Various PAC-Bayes algorithms can be derived and successfully applied to Stochas-
tic NNs (Pérez-Ortiz et al., 2021).

• PAC-Bayes is flexible enough to encompass various learning situations (bandits,
reinforcement/online/meta/lifelong learning)

• PAC-Bayes holds for heavy-tailed losses (not only bounded/subgaussians) (Chugg
et al., 2023; Haddouche et al., 2023a).

A major issue
Use of KL= impossible to consider Dirac measures (deterministic predictors)
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WASSERSTEIN DISTANCE

Amit et al. (2022): replace KL divergence by Integral Probability Metrics. In particular:
1-Wasserstein is an IPM

Wasserstein distance
Given distance d : A × A → R and a Polish space (A, d), for any probability
measures Q and P on A, the Wasserstein distance is defined by

W1(Q,P) := inf
γ∈Γ(Q,P)

{
E

(a,b)∼γ
d(a, b)

}
,

where Γ(Q,P) is the set of joint probability measures γ ∈ M(A2) such that the
marginals are Q and P.

Such a distance allows considering Dirac distributions, W1 reduces to d in this
case.
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REPLACING THE CHANGE OF MEASURE INEQUALITY

Kantorovich-Rubinstein duality
For any 1-Lipschitz function f :

W1(Q,P) ≥ E
h∼Q

[f (h)]− E
h∼P

[f (h)]

• This duality acts as a surrogate of change of measure for 1-Lipschitz functions
• Using it, Amit et al. (2022) recovered a McAllester-typed bound for finite classes

of predictors.

1 Can we obtain high probability Wasserstein PAC-Bayes bounds (WPB) for infinite
classes of predictors?

2 Are the geometric properties of the Waserstein useful in learning theory?
3 Can we obtain new generalisation-driven learning algorithms based on W1?
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PRESENTATION OF THE RESULTS

1 We obtain WPB bounds for infinite classes of predictors with a classical
convergence rate O(1/

√
m) at the cost of the curse of dimensionality.

(Haddouche et al., 2023b)
7→ Asymptotic yet interpretable guarantees

2 We show that it is possible to exploit the geometric convergence guarantees of
the Bures-Wasserstein SGD to explain its generalisation ability (Haddouche et al.,
2023b)

3 We derive efficient learning algorithms from a WPB bound not implying the
dimension at the cost of no explicit convergence rate. (Viallard et al., 2023)
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A LINK BETWEEN GENERALISATION AND OPTIMISATION
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BEYOND KANTOROVICH-RUBINSTEIN DUALITY

Finite H: Kantorovich-Rubinstein duality enough to obtain a sample-sized de-
pendent lipschitz constant on f appearing (in the PB proof)

Such a property is not retrievable for infinite H, need to find another tool

Villani et al. (2009, Theorem 5.10)
Let (X ,Q) and (Y,P) be two Polish probability spaces and let c : X × Y → R ∪
{+∞} be a nonnegative lower semicontinuous cost function:

min
π∈Π(Q,P)

∫
X×Y

c(x , y)dπ(x , y) = sup
(ψ,ϕ)∈L1(Q)×L1(P)

ϕ−ψ≤c

[
E

Y∼P
[ϕ(Y )]− E

X∼Q
[ϕ(X )]

]
,

where L1(P) refers to the set of all functions integrable with respect to P and the
condition ϕ− ψ ≤ c means that for all x , y ∈ X × Y, ϕ(y)− ψ(x) ≤ c(x , y).
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A WPB BOUND FOR COMPACT PREDICTOR SPACE

Villani et al. (2009, Theorem 5.10) with cε(x , y) = ||x − y ||+ ε→ Wε = W1 + ε
This + covering number tricks and PB route of proof gives a bound on the gen-
eralisation gap ∆S(Q) = Eh∼Q[Rµ(h)− RS(h)]:

Theorem
For any δ > 0, assume that ℓ ∈ [0, 1] is K -Lipschitz wrt to h and that H is a compact
of Rd bounded in norm by R . Let P ∈ P1(H) a (data-free) prior distribution. Then,
with probability 1− δ , for any posterior distribution Q ∈ P1(H):

|∆S(Q)| ≤

√
2K (2K + 1)

2d log
(
31+2Rm

δ

)
m

(W1(Q,P) + εm) +
log

(
3m
δ

)
m

,

with εm = O
(
1 +

√
d log(Rm)/m

)
.
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ADDITIONAL BACKGROUND

• From now, H = Rd .
• Cα,β,M :=

{
N (m,Σ) ∈ BW(Rd) | ||m|| ≤ M, αId ⪯ Σ ⪯ βId

}
.

Two sets of assumptions
• (A1) ℓ is uniformly K -Lipschitz over H: for all z , h → ℓ(h, z) is K -lipschitz, and
supz∈Z ||ℓ(0, z)|| = D < +∞.

• (A2) For any z ∈ Z , ℓ(., z) is continuously differentiable over H, ℓ(., z) is also
a convex L- smooth (i.e, its gradient is L-Lipschitz) and supz∈Z ||∇hℓ(0, z)|| =
D < +∞.

Boundedness assumption is no longer required!
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WPB BOUNDS FOR GAUSSIAN DISTRIBUTIONS

Theorem
Assume that d ≥ 3, H = Rd and that the (unbounded) loss satisfies (A1). For any
δ > 0, 0 ≤ α ≤ β,M ≥ 0, let P ∈ Cα,β,M a (data-free) prior distribution. Then, with
probability 1 − δ, for any posterior distribution Q ∈ Cα,β,M , the following bound
holds.
Asymptotic regime (d log(d) < log(m))

|∆S(Q)| ≤ Õ

√
2K

d

m
(1 +W1(Q,P)) + (1 + K 2 log(m))

log
(
m
δ

)
m

 .

In all these formulas, Õ hides a polynomial dependency in (log(d), log(m)).
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WPB BOUNDS FOR GAUSSIAN DISTRIBUTIONS (2)

Under (A2), a similar bound can be reached (see Haddouche et al., 2023b)

Tradeoff
Trading lipschitzness for smoothness has a cost: no constant K attenuating the
impact of the dimension anymore.
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TAKE-HOME MESSAGES

1 Bounds for low-data regime (d ≤ m) and transitory regime
(m > d , d log(d) ≥ log(m)) are also available in the paper → worse dependencies
in the dimension.

2 The Lipschitz constant attenuates the impact of the dimension.
3 PAC-Bayes with KL: statistical assumptions (e.g. boundedness). WPB involves

geometric ones.
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WPB WITH DATA-DEPENDENT PRIORS

Limitation
PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution
we target?

Yes if the target is differentially private. Dziugaite et al. (2018) exploited that,
when ℓ ∈ [0, 1], the Gibbs posterior is differentially private.

For lipschitz unbounded losses, it is possible to obtain a similar asymptotic
bound than the Gaussian one by replacing the Gaussian prior P with the Gibbs
posterior Q∗ = P− λ

2K
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THE BURES-WASSERSTEIN SGD

A variational inference algorithm
Goal: find Q̂ the best Gaussian approximation of Q∗ := P− λ

2K
RS

.
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THE BURES-WASSERSTEIN SGD (2)

Theorem
Assume having a smooth convex loss with a log-strongly convex prior. Under
technical assumptions on η, Q̂0, Bures-Wasserstein SGD satisfies for all k ∈ N,

EW 2
2

(
Q̂k , Q̂

)
≤ exp(−αkη)W 2

2

(
Q̂0, Q̂

)
+

36dη

α2
.

In particular, EW 2
2

(
Q̂k , Q̂

)
≤ ε2 with suitable η, k .
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BURES-WASSERSTEIN SGD GENERALISES!

Main assumptions (see Haddouche et al. (2023b) for technical ones
(A3): H = Rd ℓ is twice differentiable, L-smooth, convex and uniformly K -
Lipschitz over H.
P = N (0,Σ) with Σ = diag(γ), 1 ≥ γ > 0. Also λ ≤ 2K in the definition of Q∗.

Theorem (informal)
Assume (A3), d ≥ 3. Let βm = O(1/

√
m) and fix any βm < δ < 1. Bures-Wasserstein

SGD, with adapted initialisation and parameters η,N satisfies, with probability
1− 2δ:
Asymptotic regime (d log(d) < log(m))

|∆S(Q̂N)| ≤ Õ

√
2K

d

m

(
1 +W1(Q̂,Q∗)

)
+ (1 + K 2 log(m))

log
(
m
δ

)
m

 ,

where Õ hides a polynomial dependency in (log(d), log(m)).
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CONCLUSION

Take-home messages
• Geometric optimisation guarantees are useful to explain generalisation
• Gaussian approximations are costful (if not well-suited) for generalisation.
• A good Lipschitz constant can compensate the impact of dimensionality

What is next?
• Our WPB bounds suffers from the explicit impact of the dimension. Can we

avoid it, as in classical PAC-Bayes?
• Can we relax the Lipschitzness assumption? It was crucial for differential

privacy, but might be replaced elsewhere (e.g. by smoothness).
• 2-Wasserstein distance catches more efficiently the geometry of the predic-

tor space, could we avoid the use of the Kantorovich-Rubinstein duality to
directly exploit this distance instead of using W1 as intermediary?
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TOWARDS PRACTICAL PERFORMANCES

Previous results are meaningful asymptotically because of the impact of dimen-
sion. Can we remove this constraint?

Yes! At the cost of no explicit convergence rate.

Various advantages
• No explicit dimension term
• Allows easily heavy-tailed losses
• Allows easily non-iid data
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WPB BOUND FOR HEAVY-TAILED DATA AND DATA-DEPENDENT PRIORS

Idea: split S into L parts S1, ...,SL and exploit supermartingale techniques.
Assumptions:
• ℓ is non-negative and K -Lipschitz
• for any 1 ≤ i ≤ L,S , Eh∼Pi (.,S),z∼µ

[
ℓ(h, z)2

]
≤ 1

• Prior Pi ,S depend on S/Si .

Theorem
For any δ ∈ (0, 1], with probability at least 1− δ over the sample S , the following
holds for the distributions Pi ,S := Pi (S, .) and for any Q ∈ M(H):

E
h∼Q

[
Rµ(h)− R̂S(h)

]
≤

L∑
i=1

2|Si |K
m

W(Q,Pi ,S) +
L∑

i=1

√
|Si | ln L

δ

m2
,

where Pi ,S does not depend on Si .
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ONLINE COUNTERPART FOR NON IID DATA

Remark
The previous bound if vacuous if K = m (online setting)

Solution
The same set of technique allows a refined bound for online learning (see Vial-
lard et al., 2023, Theorems 3&4)

Why is it great?
• Zero assumption about the data distribution
• Still valid for heavy tailed losses
• Consider a sequence of priors/posteriors → more flexible.
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NEW OPTIMISATION GOALS

Batch

argminhw∈H

{
R̂S(hw) + ε

[
K∑
i=1

|Si |
m

∥w−wi∥2

]}
.

Online

∀i ≥ 1, hi ∈ argminhw∈H ℓ(hw, zi ) + ∥w−wi−1∥
s.t. ∥w−wi−1∥ ≤ 1.
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EXPERIMENTS

Classification problem on MNIST solved with linear models and fully connected
neural networks.
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Thank you for your attention!
Questions?
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