WASSERSTEIN PAC-BAYES LEARNING: ON THE INTRICATIONS BETWEEN GENERALISATION AND OPTIMISATION

Maxime Haddouche

INRIA Lille, MODAL Project-Team

Ínaía -

Tuesday 12th September, 2023

1. Introduction

2. Wasserstein PAC-Bayes to intricate generalisation and optimisation

3. Towards practical performances

Figures extracted from Paul Viallard's slides.

Example of supervised classification task: Predict if an image contains a cat or a horse

Learning sample

Learning

Model

GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample? 0 error!

GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample? 0 error!

How many errors on new examples? 3 errors...

GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample? 0 error!

How many errors on new examples? 3 errors...

Can we have guarantees on the number of errors on new examples?

Generalization Bounds

true risk(pred) ≤ *empirical risk*(pred) + *complexity*(pred, number of examples)

- A branch of learning theory providing generalisation bounds
- Emerged in the late 90s with the works of Shawe-Taylor *et al.* (1997) and McAllester (1998, 1999).
- Recently proposed non-vacuous generalisation bounds valid during neural nets (NNs) training phase (no test set) (Dziugaite *et al.*, 2017)

For more details see the recent surveys of:

- 1 Alquier (2021): https://arxiv.org/abs/2110.11216
- 2 Guedj (2019): https://arxiv.org/abs/1901.05353

Setting:

- Model/predictor $h \in \mathcal{H}$, Data space \mathcal{Z}
- Loss function $\ell:\mathcal{H}\times\mathcal{Z}\rightarrow[0,1]$
- *m*-sized learning sample $S \in Z^m$, $S := {z_i}_{i=1}^m \sim \mu^m$
- True risk $R_{\mu}(h) = \mathbb{E}_{z \sim \mu} \ell(h, z)$ and empirical risk $R_{\mu}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$
- Space of distributions over \mathcal{H} : $\mathcal{M}(\mathcal{H})$
- PAC-Bayes: learning a posterior $\mathsf{Q}\in\mathcal{M}(\mathcal{H})$ from a prior $\mathsf{P}\in\mathcal{M}(\mathcal{H})$

wł

McAllester's bound (Shawe-Taylor *et al.*, 1997; McAllester, 1998; Maurer, 2004) For any prior P on \mathcal{H} , for any $\delta \in (0, 1]$, we have with probability at least $1 - \delta$ over $S \sim \mu^m$ for all $\mathsf{Q} \in \mathcal{M}(\mathcal{H})$

$$\mathbb{E}_{h\sim \mathsf{Q}}\left[\mathsf{R}_{\mu}(h)\right] \leq \mathbb{E}_{h\sim \mathsf{Q}}\left[\mathsf{R}_{\mathcal{S}}(h)\right] + \sqrt{\frac{1}{2m}}\left[\operatorname{KL}(\mathsf{Q}\|\mathsf{P}) + \ln\frac{2\sqrt{m}}{\delta}\right]$$

here $\operatorname{KL}(\mathsf{Q}\|\mathsf{P}) = \mathbb{E}_{h\sim \mathsf{Q}}\ln\left(\frac{d\mathsf{Q}}{d\mathsf{P}}(h)\right)$

McAllester's bound (Shawe-Taylor *et al.*, 1997; McAllester, 1998; Maurer, 2004) For any prior P on \mathcal{H} , for any $\delta \in (0, 1]$, we have with probability at least $1 - \delta$ over $S \sim \mu^m$ for all $\mathsf{Q} \in \mathcal{M}(\mathcal{H})$

$$\mathbb{E}_{h\sim \mathsf{Q}}\left[\mathsf{R}_{\mu}(h)\right] \leq \mathbb{E}_{h\sim \mathsf{Q}}\left[\mathsf{R}_{\mathcal{S}}(h)\right] + \sqrt{\frac{1}{2m}\left[\operatorname{KL}(\mathsf{Q}\|\mathsf{P}) + \ln\frac{2\sqrt{m}}{\delta}\right]}$$

where $\operatorname{KL}(\mathsf{Q}\|\mathsf{P}) = \mathbb{E}_{h\sim \mathsf{Q}}\ln\left(\frac{d\mathsf{Q}}{d\mathsf{P}}(h)\right)$

- **No explicit dependency in the dimension of the problem** (potentially hidden in the KL term): potential tight bounds in practice (Dziugaite *et al.*, 2017, 2018; Pérez-Ortiz *et al.*, 2021).
- Right-hand side is fully empirical

Step 1: A key ingredient: change of measure inequality

For any function *f*, any $Q \ll P$:

$$\mathop{\mathbb{E}}_{h\sim\mathsf{Q}}[f(h)] - \ln\left(\mathop{\mathbb{E}}_{h\sim\mathsf{P}}[\exp\circ f(h)]\right) \leq \mathrm{KL}(\mathsf{Q},\mathsf{P}).$$

Step 1: A key ingredient: change of measure inequality

For any function *f*, any $Q \ll P$:

$$\mathop{\mathbb{E}}_{h\sim\mathsf{Q}}[f(h)] - \ln\left(\mathop{\mathbb{E}}_{h\sim\mathsf{P}}[\exp\circ f(h)]\right) \leq \mathrm{KL}(\mathsf{Q},\mathsf{P}).$$

Step 2: Markov's inequality

With probability at least $1 - \delta$:

$$\mathbb{E}_{h\sim \mathsf{P}}[\exp\circ f(h)] \leq \frac{1}{\delta} \mathbb{E}_{\mathcal{S}}\left[\mathbb{E}_{h\sim \mathsf{P}}[\exp\circ f(h)]\right],$$
$$= \frac{1}{\delta} \mathbb{E}_{h\sim \mathsf{P}}\left[\mathbb{E}_{\mathcal{S}}[\exp\circ f(h)]\right].$$

(P data-free + Fubini)

Step 3: Choosing the right *f*.

Take $f((h) = m \operatorname{kl}(\mathsf{R}_{\mu}(h), \mathsf{R}_{\mathcal{S}}(h))$ (kl= KL of Bernoullis). Then Maurer (2004): for any *h*, loss in [0, 1]:

 $\mathop{\mathbb{E}}_{\mathcal{S}}[\exp\circ f(h)] \leq 2\sqrt{m}$

To conclude: $kl(p,q) \ge 2(p-q)^2$.

High-probability PAC-Bayes bound = Generalisation-driven learning algorithm.

Catoni's PAC-Bayes algorithm (Alquier *et al.*, 2016, Theorem 4.1 subgaussian case): for $\lambda > 0$,

$$\mathsf{Q}^* := \operatorname{argmin}_{\mathsf{Q}} \mathop{\mathbb{E}}_{h\sim\mathsf{Q}} \left[\mathsf{R}_{\mathcal{S}}(h)
ight] + rac{\mathsf{KL}(\mathsf{Q}\|\mathsf{P})}{\lambda}$$

which leads to the explicit formulation of the **Gibbs posterior** $Q^* := P_{-\lambda R_S}$:

$$\frac{d\mathsf{Q}^*}{d\mathsf{P}}(h) = \frac{\exp\left(-\lambda\mathsf{R}_{\mathcal{S}}(h)\right)}{\mathbb{E}_{h\sim\mathsf{P}}\left[\exp\left(-\lambda\mathsf{R}_{\mathcal{S}}(h)\right)\right]}.$$

- Various PAC-Bayes algorithms can be derived and successfully applied to Stochastic NNs (Pérez-Ortiz *et al.*, 2021).
- PAC-Bayes is flexible enough to encompass various learning situations (bandits, reinforcement/online/meta/lifelong learning)
- PAC-Bayes holds for heavy-tailed losses (not only bounded/subgaussians) (Chugg *et al.*, 2023; Haddouche *et al.*, 2023a).

- Various PAC-Bayes algorithms can be derived and successfully applied to Stochastic NNs (Pérez-Ortiz *et al.*, 2021).
- PAC-Bayes is flexible enough to encompass various learning situations (bandits, reinforcement/online/meta/lifelong learning)
- PAC-Bayes holds for heavy-tailed losses (not only bounded/subgaussians) (Chugg *et al.*, 2023; Haddouche *et al.*, 2023a).

A major issue

Use of KL= impossible to consider Dirac measures (deterministic predictors)

Amit *et al.* (2022): replace KL divergence by Integral Probability Metrics. In particular: 1-Wasserstein is an IPM

Wasserstein distance

Given distance $d : A \times A \rightarrow \mathbb{R}$ and a Polish space (A, d), for any probability measures Q and P on A, the Wasserstein distance is defined by

$$W_1(Q, P) := \inf_{\gamma \in \Gamma(Q, P)} \left\{ \mathop{\mathbb{E}}_{(a,b) \sim \gamma} d(a, b) \right\},$$

where $\Gamma(Q, P)$ is the set of joint probability measures $\gamma \in \mathcal{M}(\mathcal{A}^2)$ such that the marginals are Q and P.

Amit *et al.* (2022): replace KL divergence by Integral Probability Metrics. In particular: 1-Wasserstein is an IPM

Wasserstein distance

Given distance $d : A \times A \rightarrow \mathbb{R}$ and a Polish space (A, d), for any probability measures Q and P on A, the Wasserstein distance is defined by

$$\mathsf{W}_1(\mathsf{Q},\mathsf{P}) := \inf_{\gamma \in \Gamma(\mathsf{Q},\mathsf{P})} \left\{ \mathop{\mathbb{E}}_{(a,b) \sim \gamma} d(a,b) \right\},$$

where $\Gamma(Q, P)$ is the set of joint probability measures $\gamma \in \mathcal{M}(\mathcal{A}^2)$ such that the marginals are Q and P.

Such a distance allows considering Dirac distributions, W₁ reduces to *d* in this case.

Kantorovich-Rubinstein duality

For any 1-Lipschitz function *f*:

$$\mathsf{W}_1(\mathsf{Q},\mathsf{P}) \geq \mathop{\mathbb{E}}_{h\sim\mathsf{O}}[f(h)] - \mathop{\mathbb{E}}_{h\sim\mathsf{P}}[f(h)]$$

Kantorovich-Rubinstein duality

For any 1-Lipschitz function *f*:

$$W_1(Q, P) \ge \mathbb{E}_{h \sim Q}[f(h)] - \mathbb{E}_{h \sim P}[f(h)]$$

- This duality acts as a surrogate of change of measure for 1-Lipschitz functions
- Using it, Amit *et al.* (2022) recovered a McAllester-typed bound for finite classes of predictors.

Kantorovich-Rubinstein duality

For any 1-Lipschitz function *f*:

$$W_1(Q, P) \ge \mathbb{E}_{h \sim Q}[f(h)] - \mathbb{E}_{h \sim P}[f(h)]$$

- This duality acts as a surrogate of change of measure for 1-Lipschitz functions
- Using it, Amit *et al.* (2022) recovered a McAllester-typed bound for finite classes of predictors.

- 1 Can we obtain high probability Wasserstein PAC-Bayes bounds (WPB) for infinite classes of predictors?
- **2** Are the geometric properties of the Waserstein useful in learning theory?
- **3** Can we obtain new generalisation-driven learning algorithms based on W₁?

- 1 We obtain WPB bounds for infinite classes of predictors with a classical convergence rate $O(1/\sqrt{m})$ at the cost of the curse of dimensionality. (Haddouche *et al.*, 2023b) \mapsto Asymptotic vet interpretable guarantees
- **2** We show that it is possible to exploit the geometric convergence guarantees of the *Bures-Wasserstein SGD* to explain its generalisation ability (Haddouche *et al.*, 2023b)
- **3** We derive efficient learning algorithms from a WPB bound not implying the dimension at the cost of no explicit convergence rate. (Viallard *et al.*, 2023)

A LINK BETWEEN GENERALISATION AND OPTIMISATION

Finite \mathcal{H} : Kantorovich-Rubinstein duality enough to obtain a sample-sized dependent lipschitz constant on f appearing (in the PB proof)

Finite \mathcal{H} : Kantorovich-Rubinstein duality enough to obtain a sample-sized dependent lipschitz constant on *f* appearing (in the PB proof) **Such a property is not retrievable for infinite** \mathcal{H} , need to find another tool Finite \mathcal{H} : Kantorovich-Rubinstein duality enough to obtain a sample-sized dependent lipschitz constant on *f* appearing (in the PB proof) **Such a property is not retrievable for infinite** \mathcal{H} , need to find another tool

Villani et al. (2009, Theorem 5.10)

Let (\mathcal{X}, Q) and (\mathcal{Y}, P) be two Polish probability spaces and let $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ be a nonnegative lower semicontinuous cost function:

$$\min_{\pi \in \Pi(\mathsf{Q},\mathsf{P})} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) = \sup_{\substack{(\psi,\phi) \in L^1(\mathsf{Q}) \times L^1(\mathsf{P}) \\ \phi - \psi \leq c}} \left[\mathbb{E}_{\substack{Y \sim \mathsf{P}}}[\phi(Y)] - \mathbb{E}_{\substack{X \sim \mathsf{Q}}}[\phi(X)] \right],$$

where $L_1(\mathsf{P})$ refers to the set of all functions integrable with respect to P and the condition $\phi - \psi \leq c$ means that for all $x, y \in \mathcal{X} \times \mathcal{Y}, \phi(y) - \psi(x) \leq c(x, y)$.

Villani *et al.* (2009, Theorem 5.10) with $c_{\varepsilon}(x, y) = ||x - y|| + \varepsilon \rightarrow W_{\varepsilon} = W_1 + \varepsilon$ This + covering number tricks and PB route of proof gives a bound on the *generalisation gap* $\Delta_S(Q) = \mathbb{E}_{h \sim Q}[R_{\mu}(h) - R_{\mathcal{S}}(h)]$: Villani *et al.* (2009, Theorem 5.10) with $c_{\varepsilon}(x, y) = ||x - y|| + \varepsilon \rightarrow W_{\varepsilon} = W_1 + \varepsilon$ This + covering number tricks and PB route of proof gives a bound on the *generalisation gap* $\Delta_S(Q) = \mathbb{E}_{h \sim Q}[R_{\mu}(h) - R_{\mathcal{S}}(h)]$:

Theorem

For any $\delta > 0$, assume that $\ell \in [0, 1]$ is *K*-Lipschitz wrt to *h* and that \mathcal{H} is a compact of \mathbb{R}^d bounded in norm by *R*. Let $\mathsf{P} \in \mathcal{P}_1(\mathcal{H})$ a (data-free) prior distribution. Then, with probability $1 - \delta$, for any posterior distribution $\mathsf{Q} \in \mathcal{P}_1(\mathcal{H})$:

$$|\Delta_{\mathcal{S}}(\mathbf{Q})| \leq \sqrt{2K(2K+1)\frac{2d\log\left(3\frac{1+2Rm}{\delta}\right)}{m}} \left(W_{1}(\mathbf{Q},\mathbf{P}) + \varepsilon_{m}\right) + \frac{\log\left(\frac{3m}{\delta}\right)}{m},$$

with $\varepsilon_{m} = \mathcal{O}\left(1 + \sqrt{d\log(Rm)/m}\right).$

ADDITIONAL BACKGROUND

- From now, $\mathcal{H} = \mathbb{R}^d$.
- $C_{\alpha,\beta,M} := \left\{ \mathcal{N}(m,\Sigma) \in \mathsf{BW}(\mathbb{R}^d) \mid ||m|| \leq M, \ \alpha \mathrm{Id} \preceq \Sigma \preceq \beta \mathrm{Id} \right\}.$

ADDITIONAL BACKGROUND

- From now, $\mathcal{H} = \mathbb{R}^d$.
- $C_{\alpha,\beta,M} := \left\{ \mathcal{N}(m,\Sigma) \in \mathsf{BW}(\mathbb{R}^d) \mid ||m|| \leq M, \ \alpha \mathrm{Id} \preceq \Sigma \preceq \beta \mathrm{Id} \right\}.$

Two sets of assumptions

- **(A1)** ℓ is uniformly *K*-Lipschitz over \mathcal{H} : for all $z, h \to \ell(h, z)$ is *K*-lipschitz, and $\sup_{z \in \mathcal{Z}} ||\ell(0, z)|| = D < +\infty$.
- (A2) For any $z \in \mathcal{Z}$, $\ell(., z)$ is continuously differentiable over \mathcal{H} , $\ell(., z)$ is also a convex *L* smooth (*i.e.*, its gradient is *L*-Lipschitz) and $\sup_{z \in \mathcal{Z}} ||\nabla_h \ell(0, z)|| = D < +\infty$.

Boundedness assumption is no longer required!

Theorem

Assume that $d \ge 3$, $\mathcal{H} = \mathbb{R}^d$ and that the (unbounded) loss satisfies **(A1)**. For any $\delta > 0, 0 \le \alpha \le \beta, M \ge 0$, let $\mathsf{P} \in C_{\alpha,\beta,M}$ a (data-free) prior distribution. Then, with probability $1 - \delta$, for any posterior distribution $\mathsf{Q} \in C_{\alpha,\beta,M}$, the following bound holds.

Asymptotic regime $(d \log(d) < \log(m))$

$$|\Delta_{\mathcal{S}}(\mathsf{Q})| \leq \tilde{\mathcal{O}}\left(\sqrt{2\kappa\frac{d}{m}\left(1+W_{1}(\mathsf{Q},\mathsf{P})\right)+\left(1+\kappa^{2}\log(m)\right)\frac{\log\left(\frac{m}{\delta}\right)}{m}}\right)$$

In all these formulas, \tilde{O} hides a polynomial dependency in $(\log(d), \log(m))$.

Under (A2), a similar bound can be reached (see Haddouche et al., 2023b)

Under (A2), a similar bound can be reached (see Haddouche et al., 2023b)

Tradeoff

Trading lipschitzness for smoothness has a cost: no constant *K* attenuating the impact of the dimension anymore.

- **1** Bounds for low-data regime $(d \le m)$ and transitory regime $(m > d, d \log(d) \ge \log(m))$ are also available in the paper \rightarrow worse dependencies in the dimension.
- **2** The Lipschitz constant attenuates the impact of the dimension.
- **3** PAC-Bayes with KL: statistical assumptions (*e.g.* boundedness). WPB involves geometric ones.

Limitation

PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution we target?

Limitation

PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution we target?

Yes if the target is differentially private. Dziugaite *et al.* (2018) exploited that, when $\ell \in [0, 1]$, the Gibbs posterior is differentially private.

Limitation

PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution we target?

Yes if the target is differentially private. Dziugaite *et al.* (2018) exploited that, when $\ell \in [0, 1]$, the Gibbs posterior is differentially private.

For lipschitz unbounded losses, it is possible to obtain a similar asymptotic bound than the Gaussian one by replacing the Gaussian prior P with the Gibbs posterior $Q^*=P_{-\frac{\lambda}{2K}}$

A variational inference algorithm Goal: find \hat{Q} the best Gaussian approximation of $Q^* := P_{-\frac{\lambda}{2K}R_S}$.

Algorithm 1: Bures-Wasserstein SGD.

Parameters : Strong convexity parameter $\alpha > 0$, radius M > 0; step size $\eta > 0$, initial mean m_0 , initial covariance Σ_0

 Σ_k^+ .

1 Set up
$$\hat{Q}_0 = \mathcal{N}(m_0, \Sigma_0)$$
.
2 for $k = 0..N - 1$ do
3 Draw a sample $X_k \sim \hat{Q}_k$.
4 Set $m_k^+ = m_k - \eta \nabla V_S(X_k)$.
5 Set $M_k = I - \eta (\nabla V^2(X_k) - \Sigma_k^{-1})$.

6 Set
$$\Sigma_k^+ = M_k \Sigma_k M_k$$
.
7 Set $m_{k+1} = \mathcal{P}_M(m_k^+), \ \Sigma_{k+1} = \operatorname{clip}^{1/\alpha}$

8 Set
$$\hat{Q}_{k+1} = \mathcal{N}(m_{k+1}, \Sigma_{k+1})$$

9 end

10 **Return**
$$(\hat{Q}_k)_{k=1...N}$$
.

Theorem

Assume having a smooth convex loss with a log-strongly convex prior. Under technical assumptions on η , \hat{Q}_0 , Bures-Wasserstein SGD satisfies for all $k \in \mathbb{N}$,

$$\mathbb{E}W_2^2\left(\hat{Q}_k,\hat{\mathsf{Q}}\right) \leq \exp(-\alpha k\eta)W_2^2\left(\hat{Q}_0,\hat{\mathsf{Q}}\right) + \frac{36d\eta}{\alpha^2}$$

In particular, $\mathbb{E}W_2^2\left(\hat{Q}_k,\hat{Q}\right) \leq \varepsilon^2$ with suitable η, k .

Main assumptions (see Haddouche *et al.* (2023b) for technical ones (A3): $\mathcal{H} = \mathbb{R}^d \ \ell$ is twice differentiable, *L*-smooth, convex and uniformly *K*-Lipschitz over \mathcal{H} . $\mathsf{P} = \mathcal{N}(0, \Sigma)$ with $\Sigma = \text{diag}(\gamma), 1 \ge \gamma > 0$. Also $\lambda \le 2K$ in the definition of Q^* .

Theorem (informal)

Assume (A3), $d \ge 3$. Let $\beta_m = O(1/\sqrt{m})$ and fix any $\beta_m < \delta < 1$. Bures-Wasserstein SGD, with adapted initialisation and parameters η , N satisfies, with probability $1 - 2\delta$:

Asymptotic regime $(d \log(d) < \log(m))$

$$|\Delta_{\mathcal{S}}(\hat{Q}_{\mathcal{N}})| \leq \tilde{\mathcal{O}}\left(\sqrt{2\mathcal{K}rac{d}{m}\left(1+\mathcal{W}_{1}(\hat{\mathsf{Q}},\mathsf{Q}^{*})
ight)+(1+\mathcal{K}^{2}\log(m))rac{\log\left(rac{m}{\delta}
ight)}{m}}
ight)$$

where \tilde{O} hides a polynomial dependency in $(\log(d), \log(m))$.

CONCLUSION

Take-home messages

- Geometric optimisation guarantees are useful to explain generalisation
- Gaussian approximations are costful (if not well-suited) for generalisation.
- A good Lipschitz constant can compensate the impact of dimensionality

CONCLUSION

Take-home messages

- Geometric optimisation guarantees are useful to explain generalisation
- Gaussian approximations are costful (if not well-suited) for generalisation.
- A good Lipschitz constant can compensate the impact of dimensionality

What is next?

- Our WPB bounds suffers from the explicit impact of the dimension. Can we avoid it, as in classical PAC-Bayes?
- Can we relax the Lipschitzness assumption? It was crucial for differential privacy, but might be replaced elsewhere (e.g. by smoothness).
- 2-Wasserstein distance catches more efficiently the geometry of the predictor space, could we avoid the use of the Kantorovich-Rubinstein duality to directly exploit this distance instead of using W_1 as intermediary?

Previous results are meaningful asymptotically because of the impact of dimension. **Can we remove this constraint?**

Previous results are meaningful asymptotically because of the impact of dimension. **Can we remove this constraint?**

Yes! At the cost of no explicit convergence rate.

Previous results are meaningful asymptotically because of the impact of dimension. **Can we remove this constraint?**

Yes! At the cost of no explicit convergence rate.

Various advantages

- No explicit dimension term
- Allows easily heavy-tailed losses
- Allows easily non-iid data

WPB BOUND FOR HEAVY-TAILED DATA AND DATA-DEPENDENT PRIORS

Idea: split S into L parts $S_1, ..., S_L$ and exploit supermartingale techniques. **Assumptions:**

- ℓ is non-negative and K-Lipschitz
- for any $1 \le i \le L, S$, $\mathbb{E}_{h \sim \mathsf{P}_i(.,S), z \sim \mu} \left[\ell(h, z)^2 \right] \le 1$
- Prior $P_{i,S}$ depend on S/S_i .

Theorem

For any $\delta \in (0, 1]$, with probability at least $1 - \delta$ over the sample S, the following holds for the distributions $\mathsf{P}_{i,S} := \mathsf{P}_i(S, .)$ and for any $\mathsf{Q} \in \mathcal{M}(\mathcal{H})$:

$$\mathbb{E}_{h\sim \mathsf{Q}}\left[\mathsf{R}_{\mu}(h) - \hat{\mathsf{R}}_{\mathcal{S}}(h)
ight] \leq \sum_{i=1}^{L}rac{2|\mathcal{S}_i|K}{m}\operatorname{W}(\mathsf{Q},\mathsf{P}_{i,\mathcal{S}}) + \sum_{i=1}^{L}\sqrt{rac{|\mathcal{S}_i|\lnrac{L}{\delta}}{m^2}},$$

where $P_{i,S}$ does not depend on S_i .

Remark

The previous bound if vacuous if K = m (online setting)

Remark

The previous bound if vacuous if K = m (online setting)

Solution

The same set of technique allows a refined bound for online learning (see Viallard *et al.*, 2023, Theorems 3&4)

Why is it great?

- Zero assumption about the data distribution
- Still valid for heavy tailed losses
- Consider a sequence of priors/posteriors \rightarrow more flexible.

EXPERIMENTS

Classification problem on MNIST solved with linear models and fully connected neural networks.

(a) Linear model - batch learning

(b) Linear model - online learning \mathfrak{C}_{μ}

	Alg.	$1(\frac{1}{m})$	Alg.	$1(\frac{1}{\sqrt{m}})$	E	RM		Al	g. 2	0	GD
Dataset	$\Re_{\mathcal{S}}(h)$	$\Re_{\mu}(h)$	$\Re_{\mathcal{S}}(h)$	$\Re_{\mu}(h)$	$ \Re_{\mathcal{S}}(h)$	$\Re_{\mu}(h)$		es.	\mathfrak{C}_{μ}	\mathfrak{C}_S	\mathfrak{C}_{μ}
ADULT	.165	.166	.165	.167	.166	.167	l l	.230	.236	.248	.248
FASHIONMNIST	.128	.151	.126	.148	.139	.153		.223	.282	.540	.548
LETTER	.285	.297	.287	.296	.287	.297		.919	.935	.916	.926
MNIST	.200	.216	.066	.092	.065	.091		.284	.310	.378	.397
MUSHROOMS	.001	.001	.001	.001	.001	.001		.218	.222	.082	.087
NURSERY	.766	.773	.760	.773	.794	.807		.794	.807	.789	.805
PENDIGITS	.049	.059	.050	.061	.052	.064		.342	.484	.589	.600
PHISHING	.063	.067	.065	.069	.064	.067		.226	.242	.226	.220
SATIMAGE	.144	.200	.138	.201	.148	.209		.669	.938	.635	.888
SEGMENTATION	.057	.216	.164	.386	.087	.232		.749	.803	.738	.893
SENSORLESS	.129	.129	.131	.131	.134	.136		.906	.910	.825	.830
TICTACTOE	.388	.299	.013	.021	.228	.238		.443	.468	.390	.303
YEAST	.527	.497	.524	.504	.470	.427		.699	.713	.667	.708

(c) NN model - batch learning

(d) NN model - online learning $\mathfrak{C}_S \mathfrak{C}_\mu \mid \mathfrak{C}_S \mathfrak{C}_\mu$

	Alg.	$1(\frac{1}{m})$	Alg.	$1(\frac{1}{\sqrt{m}})$	E	RM		Al	g. 2	0	GD
Dataset	$\Re_{S}(h)$	$\Re_{\mu}(h)$	$\Re_{\mathcal{S}}(h)$	$\Re_{\mu}(h)$	$ \Re_{\mathcal{S}}(h)$	$\Re_{\mu}(h)$		es 🛛	\mathfrak{C}_{μ}	es.	\mathfrak{C}_{μ}
ADULT	.164	.164	.166	.165	.165	.163	i	.241	.254	.248	.248
FASHIONMNIST	.159	.163	.156	.160	.163	.167		.096	.327	.397	.446
LETTER	.259	.272	.250	.260	.258	.270		.829	.945	.958	.963
MNIST	.112	.120	.084	.094	.119	.127		.092	.265	.470	.521
MUSHROOMS	.000	.000	.000	.000	.000	.000		.082	.122	.202	.217
NURSERY	.706	.719	.706	.719	.706	.719		.800	.805	.793	.806
PENDIGITS	.009	.023	.021	.032	.009	.022		.323	.537	.871	.879
PHISHING	.042	.050	.039	.054	.046	.055		.164	.222	.331	.318
SATIMAGE	.132	.184	.149	.172	.141	.189		.401	.763	.626	.857
SEGMENTATION	.145	.250	.189	.373	.174	.389		.619	.857	.739	.913
SENSORLESS	.076	.079	.077	.079	.075	.078		.899	.910	.622	.633
TICTACTOE	.392	.301	.000	.038	.000	.023		.388	.309	.397	.309
YEAST	.679	.666	.487	.478	.644	.682		.662	.720	.702	.720

31	/3	1

Thank you for your attention! Questions?

REFERENCES

- John Shawe-Taylor and Robert Williamson. A PAC Analysis of a Bayesian Estimator. *COLT*. (1997).
- David McAllester. Some PAC-Bayesian Theorems. COLT. (1998).
- David McAllester. Some PAC-Bayesian Theorems. *Machine Learning*. (1999).
- Andreas Maurer. A Note on the PAC Bayesian Theorem. *CoRR*. cs.LG/0411099. (2004).
- Cédric Villani *et al.* Optimal transport: old and new. Vol. 338. *Springer*. (2009).
- Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approximations of Gibbs posteriors. *Journal of Machine Learning Research*. (2016).
- **Gintare Karolina Dziugaite and Daniel Roy**. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. *UAI*. (2017).

REFERENCES

Gintare Karolina Dziugaite and Daniel Roy. Data-dependent PAC-Bayes priors via differential privacy. *NeurIPS*. (2018).

Benjamin Guedj. A Primer on PAC-Bayesian Learning. *CoRR*. abs/1901.05353. (2019).

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. *CoRR*. abs/2110.11216. (2021).

María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter Risk Certificates for Neural Networks. *Journal of Machine Learning Research*. (2021).

Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral Probability Metrics PAC-Bayes Bounds. *Conference on Neural Information Processing Systems (NeurIPS)*. (2022).

Ben Chugg, Hongjian Wang, and Aaditya Ramdas. A unified recipe for deriving (time-uniform) PAC-Bayes bounds. *CoRR*. abs/2302.03421. (2023).

REFERENCES

Maxime Haddouche and Benjamin Guedj. PAC-Bayes Generalisation Bounds for Heavy-Tailed Losses through Supermartingales. *Transactions on Machine Learning Research*. (2023).

Maxime Haddouche and Benjamin Guedj. Wasserstein PAC-Bayes Learning: A Bridge Between Generalisation and Optimisation. *CoRR*. abs/2304.07048. (2023).

Paul Viallard, Maxime Haddouche, Umut Simsekli, and Benjamin Guedj. Learning via Wasserstein-Based High Probability Generalisation Bounds. arXiv preprint arXiv:2306.04375. (2023).