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(SPECIAL CASE OF) PAC-BAYESIAN LEARNING

PAC-Bayesian learning

Learning a distribution Q over models from the data and a prior distribution P
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PAC-Bayesian generalisation bounds in a nutshell
With probability at least 1− δ

performance gap(Q) ≤ bound(complexity(Q,P), 1
m , ln 1

δ

)
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SETTING

Notations:
• Predictor/hypothesis h ∈ H, Data space Z
• Loss ℓ : H×Z → R+, possibly heavy-tailed
• m-sized i.i.d. learning sample S ∈ Zm, S := {zi}mi=1 ∼ D⊗m

• Population risk RD(h) = Ez∼D ℓ(h, z) and empirical risk R̂S(h) =
1
m

∑m
i=1 ℓ(h, zi)

• Expected risks RD(Q) = E
h∼Q

[RD(h)], R̂S(Q) = E
h∼Q

[R̂S(h)]

• Space of distributions over H: M(H)

Catoni’s bound Alquier et al. (2016, Theorem 4.1) (σ-subgaussian losses)
For λ > 0, with probability 1−δ over S ∼ Dm, for any Q ∈ M(H),

RD(Q) ≤ R̂S(Q) +
KL(Q,P) + ln 1

δ

λ
+

λσ2

2m
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FLAT MINIMUM

What is a flat minimum?

A minimum such that its neighbourhood nearly minimises the loss.

Image from Liebenwein et al. (2021).
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FLAT MINIMA AND GENERALISATION ARE CORRELATED!

Correlations with generalisation recently emerged:

• Flat minima of R̂S .PAC-Bayes based correlation measure : works for many datasets (Neyshabur
et al., 2017; Dziugaite et al., 2020; Jiang et al., 2020)

• Flat minima of the adversarial loss in the context of adversarially robust learning.(Stutz et al., 2021)
• Flat minima implies generalisation for 2-layers nets (Wen et al., 2023).

Can we go beyond correlation or 2-layers net and obtain sound generalisation
bounds involving directly flat minima?
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ESSENTIAL TOOLS: POINCARÉ AND LOG-SOBOLEV INEQUALITIES

Notation: for any Q, H1(Q) :=
{
f ∈ L2(Q) ∩D1(Rd) | ∥∇f∥ ∈ L2(Q)

}
Poincaré
Q is Poinc(cP ) if for all f ∈ H1(Q):

Var(f) ≤ cP (Q) E
h∼Q

[
∥∇f(h)∥2

]
,

Log-Sobolev

Q is L-Sob(cLS) if for all function f ∈ H1(Q):
E

h∼Q

[
f2(h) log

(
f2(h)

Eh∼Q [f2(h)]

)]
≤ cLS(Q) E

h∼Q

[
∥∇f(h)∥2

]
,

Gaussian distributions and Gibbs posteriors are Poinc and L-Sob!
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FAST-RATE GENERALISATION BOUNDS FOR FLAT MINIMA (1)

Notation: Err(ℓ,Q, z) := Eh∼Q[ℓ(h, z)]

Assumption

Q ∈ M(H) is quadratically self-bounded w.r.t. ℓ and C > 0 (namely QSB(ℓ, C)) if
Ez∼D

[
Err(ℓ,Q, z)2

]
≤ CRD(Q) (= CEz∼D [Err(ℓ,Q, z)])

• QSB intricates D ∈ M(Z) with Q ∈ M(H)

• Satisfied if ℓ ∈ [0,K] with C = K.
• QSB quantifies the ’flatness’ of the post-training minima reached by Q.
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IS THE QSB ASSUMPTION VERIFIED IN PRACTICE?

QSB holds for 3-layer neural nets trained on MNIST (black curve)!
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FAST-RATE GENERALISATION BOUNDS VIA FLAT MINIMA (2)

Theorem
For any C > 0, data-free prior P, with probability at least 1− δ for any m > 0, and Qbeing Poinc(cP ), QSB(ℓ, C),

RD(Q) ≤ 2R̂S(Q) + 2C
KL(Q,P) + log(1/δ)

m
+

1

C
cP (Q) E

z∼D

[
E

h∼Q

(
∥∇hℓ(h, z)∥2

)]
.

If D is also Poinc:
With more minor technical assumptions, for any Q being Poinc(cP ) with RD(Q) ≤ C:

RD(Q) ≤ 2R̂S(Q) + 2C
KL(Q,P) + log(1/δ)

m

+
1

C

(
cP (Q) E

z∼D

[
E

h∼Q

(
∥∇hℓ(h, z)∥2

)]
+ cP (D) E

z∼D

(∥∥∥∥ E
h∼Q

[∇zℓ(h, z)]

∥∥∥∥2
))

.
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FULLY EMPIRICAL FAST RATE

Current drawback: bounds are not empirical.

Solution: C2 gradient-lipschitz losses!

Theorem
For any C1, C2, c > 0, with probability at least 1− δ, for any m > 0, Q being Poinc(cP )with constant c, QSB(ℓ, C1), QSB (∥∇hℓ∥2, C2

),
RD(Q) ≤ 2R̂S(Q) +O

(
E

h∼Q

[
1

m

m∑
i=1

∥∇hℓ(h, zi)∥2
]
+

KL(Q,P) + log(1/δ)

m

)
.
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TAKE-HOME MESSAGES

If Q satisfies either
1 Flat minima for R̂S and RD,
2 if ℓ gradient-lipschitz, flat minima for R̂S and empiricalgradient norms,

then Q generalises well!
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GIBBS POSTERIORS

Current limitation: with Poincaré posteriors, KL is uncontrolled.

Solution: consider Gibbs posterior with log-Sobolev priors!

Definition
P−γR̂S

is the Gibbs posterior w.r.t. prior P with inverse temperature γ > 0 if
dP−γR̂S

(h) ∝ exp
(
−γR̂S(h)

)
dP (h)

.
Why focus on those?

• Minimise Catoni’s bound (Alquier et al., 2016, Theorem 4.1)
• if P L-Sob(+ technical assumptions) and ℓ = ℓ1 + ℓ2 (ℓ1 convex, twice differentiable,

ℓ2 bounded) then P−γR̂S
is L-Sob.
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Current limitation: with Poincaré posteriors, KL is uncontrolled.

Solution: consider Gibbs posterior with log-Sobolev priors!

Definition
P−γR̂S

is the Gibbs posterior w.r.t. prior P with inverse temperature γ > 0 if
dP−γR̂S

(h) ∝ exp
(
−γR̂S(h)

)
dP (h)

.
Why focus on those?

• Minimise Catoni’s bound (Alquier et al., 2016, Theorem 4.1)
• if P L-Sob(+ technical assumptions) and ℓ = ℓ1 + ℓ2 (ℓ1 convex, twice differentiable,

ℓ2 bounded) then P−γR̂S
is L-Sob.

12/18



UNDERSTANDING GIBBS POSTERIORS THROUGH FLAT MINIMA

Theorem
For any C > 0, any γ > 0, any prior P L-Sob(cLS) (+ technical assumptions), if
ℓ = ℓ1 + ℓ2 (as above), then with probability at least 1− δ, for any m > 0, Q being
QSB(ℓ, C):

RD(P−γR̂S
) ≤ 2R̂S(P−γR̂S

)+

O

C
γ2 Eh∼P−γR̂S

[
∥∇hR̂S(h)∥2

]
+ log(1/δ)

m
+

1

C
E

z∼D

[
E

h∼P−γR̂S

(
∥∇hℓ(h, z)∥2

)] .

KL small if a flat minima on R̂S is reached:
→ Flat minima fully explain generalisation here!
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TAKE-HOME MESSAGES

1 Gibbs posterior generalises well if they reach a flat minimaon both R̂S and RD.
2 Flatness of the minimum on R̂S controls the expansion of KL.
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RESULT FOR DETERMINISTIC PREDICTORS

Drawback: results hold for probabilistic predictors

Answer: Exploit the 2-Wasserstein distance to obtain
guarantees valid for deterministic predictors (Diracs)
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CONVERGENCE GUARANTEES FOR NON-CONVEX SGD

Key tool: a novel change of measure inequality

For any f gradient lipschitz, any P,Q:
Eh∼Q[f(h)] ≤

G

2
W 2

2 (Q,P ) + Eh∼P[f(h)] +DEh∼Q[∥∇f(h)∥].

NB: a variant of this formula with a KL is attainable if Q << P and P is L-Sob !
Assumption

• Gradient-lipschitz loss.
• P ∝ exp(−V (h))dh
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RESULT

Theorem
Let δ ∈ (0, 1) and P ∈ M(H) a data-free prior. Assume H has a finite diameter D > 0,
ℓ ≥ 0 and that for any m, the generalisation gap ∆Sm is G gradient-Lipschitz. Assumethat Eh∼PEz∼D[ℓ(h, z)

2] ≤ σ2, then the following holds with probability at least 1− δ,for any m > 0 and any Q:

RD(Q) ≤ R̂Sm(Q) +
G

2
W 2

2 (Q,P) +

√
2σ2 log

(
1
δ

)
m

+DEh∼Q

(∥∥∥∇hRD(h)−∇hR̂Sm(h)
∥∥∥)
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CONCLUSION

• We mathematically quantify the impact of flat minima ingeneralisation: momentum in Catoni’s bound!
• The QSB condition is verified on basic neural nets(classification) with constant C sharper than 1!
• A crucial future lead: understanding why optimisationprocedures on deep nets lead to flat minima: here we are

only able to explain why flat minima generalise well, not
how we reach them.

Full paper available at https://arxiv.org/abs/2402.08508
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Thank you for your attention!
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