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1. Introduction

2. Wasserstein PAC-Bayes to intricate generalisation and optimisation

3. Towards practical performances
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INTRO: BATCH LEARNING

Figures extracted from Paul Viallard’s slides.

Example of supervised classification task: Predict if an image contains a cat or a horse

Learning sample

Learning

Model
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GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample?
0 error!

How many errors on new examples?
3 errors. . .
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GENERALIZATION BOUNDS IN BATCH LEARNING

How many errors on the learning sample?
0 error!

How many errors on new examples?
3 errors. . .

Can we have guarantees on the number of errors on new examples?

Generalization Bounds

true risk(pred) ≤ empirical risk(pred) + complexity(pred, number of examples)
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WHAT IS PAC-BAYES LEARNING?

• A branch of learning theory providing generalisation bounds
• Emerged in the late 90s with the works of Shawe-Taylor et al. (1997) and McAllester

(1998, 1999).
• Recently proposed non-vacuous generalisation bounds valid during neural nets

(NNs) training phase (no test set) (Dziugaite et al., 2017)

For more details see the recent surveys of:
1 Alquier (2021): https://arxiv.org/abs/2110.11216
2 Guedj (2019): https://arxiv.org/abs/1901.05353
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BASIC SETTING

Setting:
• Model/predictor h ∈ H, Data space Z
• Loss function ℓ : H×Z → [0, 1]

• m-sized learning sample S ∈ Zm, S := {zi}mi=1 ∼ µm

• True risk Rµ(h) = Ez∼µ ℓ(h, z) and empirical risk Rµ(h) = 1
m

∑m
i=1 ℓ(h, zi )

• Space of distributions over H: M(H)

• PAC-Bayes: learning a posterior Q ∈ M(H) from a prior P ∈ M(H)
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PAC-BAYESIAN BOUND IN BATCH LEARNING

McAllester’s bound (Shawe-Taylor et al., 1997; McAllester, 1998; Maurer, 2004)
For any prior P on H, for any δ ∈ (0, 1], we have with probability at least 1− δ over
S ∼ µm for all Q ∈ M(H)

E
h∼Q

[
Rµ(h)

]
≤ E

h∼Q

[
RS(h)

]
+

√
1

2m

[
KL(Q∥P) + ln

2
√
m

δ

]
where KL(Q∥P) = Eh∼Q ln

(
dQ
dP (h)

)

• No explicit dependency in the dimension of the problem (potentially hidden
in the KL term): potential tight bounds in practice (Dziugaite et al., 2017, 2018;
Pérez-Ortiz et al., 2021).

• Right-hand side is fully empirical
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A SIMPLE ROUTE OF PROOF

Step 1: A key ingredient: change of measure inequality

For any function f , any Q ≪ P:

E
h∼Q

[f (h)]− ln

(
E

h∼P
[exp ◦f (h)]

)
≤ KL(Q,P).

Step 2: Markov’s inequality

With probability at least 1− δ:

E
h∼P

[exp ◦f (h)] ≤ 1

δ
E
S

[
E

h∼P
[exp ◦f (h)]

]
,

=
1

δ
E

h∼P

[
E
S
[exp ◦f (h)]

]
. (P data-free + Fubini)
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A SIMPLE ROUTE OF PROOF (2)

Step 3: Choosing the right f .

Take f ((h) = m kl (Rµ(h),RS(h)) (kl= KL of Bernoullis).
Then Maurer (2004): for any h, loss in [0, 1]:

E
S
[exp ◦f (h)] ≤ 2

√
m

To conclude: kl(p, q) ≥ 2(p − q)2.
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TOWARDS PRACTICAL ALGORITHMS

High-probability PAC-Bayes bound = Generalisation-driven learning algorithm.

Catoni’s PAC-Bayes algorithm (Alquier et al., 2016, Theorem 4.1 subgaussian case):
for λ > 0,

Q∗ := argminQ E
h∼Q

[
RS(h)

]
+

KL(Q∥P)
λ

which leads to the explicit formulation of the Gibbs posterior Q∗ := P−λRS :

dQ∗

dP (h) =
exp (−λRS(h))

Eh∼P [exp (−λRS(h))]
.
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STRENGTHS OF PAC-BAYES

• Various PAC-Bayes algorithms can be derived and successfully applied to Stochas-
tic NNs (Pérez-Ortiz et al., 2021).

• PAC-Bayes is flexible enough to encompass various learning situations (bandits,
reinforcement/online/meta/lifelong learning)

• PAC-Bayes holds for heavy-tailed losses (not only bounded/subgaussians) (Chugg
et al., 2023; Haddouche et al., 2023a).

A major issue
Use of KL= impossible to consider Dirac measures (deterministic predictors)
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WASSERSTEIN DISTANCE

Amit et al. (2022): replace KL divergence by Integral Probability Metrics. In particular:
1-Wasserstein is an IPM

Wasserstein distance
Given distance d : A × A → R and a Polish space (A, d), for any probability
measures Q and P on A, the Wasserstein distance is defined by

W1(Q,P) := inf
γ∈Γ(Q,P)

{
E

(a,b)∼γ
d(a, b)

}
,

where Γ(Q,P) is the set of joint probability measures γ ∈ M(A2) such that the
marginals are Q and P.

Such a distance allows considering Dirac distributions, W1 reduces to d in this
case.
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REPLACING THE CHANGE OF MEASURE INEQUALITY

Kantorovich-Rubinstein duality
For any 1-Lipschitz function f :

W1(Q,P) ≥ E
h∼Q

[f (h)]− E
h∼P

[f (h)]

• This duality acts as a surrogate of change of measure for 1-Lipschitz functions
• Using it, Amit et al. (2022) recovered a McAllester-typed bound for finite classes

of predictors.

1 Can we obtain high probability Wasserstein PAC-Bayes bounds (WPB) for infinite
classes of predictors?

2 Are the geometric properties of the Waserstein useful in learning theory?
3 Can we obtain new generalisation-driven learning algorithms based on W1?
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PRESENTATION OF THE RESULTS

1 We obtain WPB bounds for infinite classes of predictors with a classical
convergence rate O(1/

√
m) at the cost of the curse of dimensionality.

(Haddouche et al., 2023b)
7→ Asymptotic yet interpretable guarantees

2 We show that it is possible to exploit the geometric convergence guarantees of
the Bures-Wasserstein SGD to explain its generalisation ability (Haddouche et al.,
2023b)

3 We derive efficient learning algorithms from a WPB bound not implying the
dimension at the cost of no explicit convergence rate. (Viallard et al., 2023)
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A LINK BETWEEN GENERALISATION AND OPTIMISATION
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BEYOND KANTOROVICH-RUBINSTEIN DUALITY

Finite H: Kantorovich-Rubinstein duality enough to obtain a sample-sized de-
pendent lipschitz constant on f appearing (in the PB proof)

Such a property is not retrievable for infinite H, need to find another tool

Villani et al. (2009, Theorem 5.10)
Let (X ,Q) and (Y,P) be two Polish probability spaces and let c : X × Y → R ∪
{+∞} be a nonnegative lower semicontinuous cost function:

min
π∈Π(Q,P)

∫
X×Y

c(x , y)dπ(x , y) = sup
(ψ,ϕ)∈L1(Q)×L1(P)

ϕ−ψ≤c

[
E

Y∼P
[ϕ(Y )]− E

X∼Q
[ϕ(X )]

]
,

where L1(P) refers to the set of all functions integrable with respect to P and the
condition ϕ− ψ ≤ c means that for all x , y ∈ X × Y, ϕ(y)− ψ(x) ≤ c(x , y).
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A WPB BOUND FOR COMPACT PREDICTOR SPACE

Villani et al. (2009, Theorem 5.10) with cε(x , y) = ||x − y ||+ ε→ Wε = W1 + ε
This + covering number tricks and PB route of proof gives a bound on the gen-
eralisation gap ∆S(Q) = Eh∼Q[Rµ(h)− RS(h)]:

Theorem
For any δ > 0, assume that ℓ ∈ [0, 1] is K -Lipschitz wrt to h and that H is a compact
of Rd bounded in norm by R . Let P ∈ P1(H) a (data-free) prior distribution. Then,
with probability 1− δ , for any posterior distribution Q ∈ P1(H):

|∆S(Q)| ≤

√
2K (2K + 1)

2d log
(
31+2Rm

δ

)
m

(W1(Q,P) + εm) +
log

(
3m
δ

)
m

,

with εm = O
(
1 +

√
d log(Rm)/m

)
.
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ADDITIONAL BACKGROUND

• From now, H = Rd .
• Cα,β,M :=

{
N (m,Σ) ∈ BW(Rd) | ||m|| ≤ M, αId ⪯ Σ ⪯ βId

}
.

Two sets of assumptions
• (A1) ℓ is uniformly K -Lipschitz over H: for all z , h → ℓ(h, z) is K -lipschitz, and
supz∈Z ||ℓ(0, z)|| = D < +∞.

• (A2) For any z ∈ Z , ℓ(., z) is continuously differentiable over H, ℓ(., z) is also
a convex L- smooth (i.e, its gradient is L-Lipschitz) and supz∈Z ||∇hℓ(0, z)|| =
D < +∞.

Boundedness assumption is no longer required!
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WPB BOUNDS FOR GAUSSIAN DISTRIBUTIONS

Theorem
Assume that d ≥ 3, H = Rd and that the (unbounded) loss satisfies (A1). For any
δ > 0, 0 ≤ α ≤ β,M ≥ 0, let P ∈ Cα,β,M a (data-free) prior distribution. Then, with
probability 1 − δ, for any posterior distribution Q ∈ Cα,β,M , the following bound
holds.
Asymptotic regime (d log(d) < log(m))

|∆S(Q)| ≤ Õ

√
2K

d

m
(1 +W1(Q,P)) + (1 + K 2 log(m))

log
(
m
δ

)
m

 .

In all these formulas, Õ hides a polynomial dependency in (log(d), log(m)).
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WPB BOUNDS FOR GAUSSIAN DISTRIBUTIONS (2)

Under (A2), a similar bound can be reached (see Haddouche et al., 2023b)

Tradeoff
Trading lipschitzness for smoothness has a cost: no constant K attenuating the
impact of the dimension anymore.
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TAKE-HOME MESSAGES

1 Bounds for low-data regime (d ≤ m) and transitory regime
(m > d , d log(d) ≥ log(m)) are also available in the paper → worse dependencies
in the dimension.

2 The Lipschitz constant attenuates the impact of the dimension.
3 PAC-Bayes with KL: statistical assumptions (e.g. boundedness). WPB involves

geometric ones.
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WPB WITH DATA-DEPENDENT PRIORS

Limitation
PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution
we target?

Yes if the target is differentially private. Dziugaite et al. (2018) exploited that,
when ℓ ∈ [0, 1], the Gibbs posterior is differentially private.

For lipschitz unbounded losses, it is possible to obtain a similar asymptotic
bound than the Gaussian one by replacing the Gaussian prior P with the Gibbs
posterior Q∗ = P− λ

2K

22/31



WPB WITH DATA-DEPENDENT PRIORS

Limitation
PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution
we target?

Yes if the target is differentially private. Dziugaite et al. (2018) exploited that,
when ℓ ∈ [0, 1], the Gibbs posterior is differentially private.

For lipschitz unbounded losses, it is possible to obtain a similar asymptotic
bound than the Gaussian one by replacing the Gaussian prior P with the Gibbs
posterior Q∗ = P− λ

2K

22/31



WPB WITH DATA-DEPENDENT PRIORS

Limitation
PAC-Bayes prior is arbitrary. Is it possible to replace the prior by the distribution
we target?

Yes if the target is differentially private. Dziugaite et al. (2018) exploited that,
when ℓ ∈ [0, 1], the Gibbs posterior is differentially private.

For lipschitz unbounded losses, it is possible to obtain a similar asymptotic
bound than the Gaussian one by replacing the Gaussian prior P with the Gibbs
posterior Q∗ = P− λ

2K

22/31



THE BURES-WASSERSTEIN SGD

A variational inference algorithm
Goal: find Q̂ the best Gaussian approximation of Q∗ := P− λ

2K
RS

.
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THE BURES-WASSERSTEIN SGD (2)

Theorem
Assume having a smooth convex loss with a log-strongly convex prior. Under
technical assumptions on η, Q̂0, Bures-Wasserstein SGD satisfies for all k ∈ N,

EW 2
2

(
Q̂k , Q̂

)
≤ exp(−αkη)W 2

2

(
Q̂0, Q̂

)
+

36dη

α2
.

In particular, EW 2
2

(
Q̂k , Q̂

)
≤ ε2 with suitable η, k .
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BURES-WASSERSTEIN SGD GENERALISES!

Main assumptions (see Haddouche et al. (2023b) for technical ones
(A3): H = Rd ℓ is twice differentiable, L-smooth, convex and uniformly K -
Lipschitz over H.
P = N (0,Σ) with Σ = diag(γ), 1 ≥ γ > 0. Also λ ≤ 2K in the definition of Q∗.

Theorem (informal)
Assume (A3), d ≥ 3. Let βm = O(1/

√
m) and fix any βm < δ < 1. Bures-Wasserstein

SGD, with adapted initialisation and parameters η,N satisfies, with probability
1− 2δ:
Asymptotic regime (d log(d) < log(m))

|∆S(Q̂N)| ≤ Õ

√
2K

d

m

(
1 +W1(Q̂,Q∗)

)
+ (1 + K 2 log(m))

log
(
m
δ

)
m

 ,

where Õ hides a polynomial dependency in (log(d), log(m)).
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CONCLUSION

Take-home messages
• Geometric optimisation guarantees are useful to explain generalisation
• Gaussian approximations are costful (if not well-suited) for generalisation.
• A good Lipschitz constant can compensate the impact of dimensionality

What is next?
• Our WPB bounds suffers from the explicit impact of the dimension. Can we

avoid it, as in classical PAC-Bayes?
• Can we relax the Lipschitzness assumption? It was crucial for differential

privacy, but might be replaced elsewhere (e.g. by smoothness).
• 2-Wasserstein distance catches more efficiently the geometry of the predic-

tor space, could we avoid the use of the Kantorovich-Rubinstein duality to
directly exploit this distance instead of using W1 as intermediary?
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TOWARDS PRACTICAL PERFORMANCES

Previous results are meaningful asymptotically because of the impact of dimen-
sion. Can we remove this constraint?

Yes! At the cost of no explicit convergence rate.

Various advantages
• No explicit dimension term
• Allows easily heavy-tailed losses
• Allows easily non-iid data
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WPB BOUND FOR HEAVY-TAILED DATA AND DATA-DEPENDENT PRIORS

Idea: split S into L parts S1, ...,SL and exploit supermartingale techniques.
Assumptions:
• ℓ is non-negative and K -Lipschitz
• for any 1 ≤ i ≤ L,S , Eh∼Pi (.,S),z∼µ

[
ℓ(h, z)2

]
≤ 1

• Prior Pi ,S depend on S/Si .

Theorem
For any δ ∈ (0, 1], with probability at least 1− δ over the sample S , the following
holds for the distributions Pi ,S := Pi (S, .) and for any Q ∈ M(H):

E
h∼Q

[
Rµ(h)− R̂S(h)

]
≤

L∑
i=1

2|Si |K
m

W(Q,Pi ,S) +
L∑

i=1

√
|Si | ln L

δ

m2
,

where Pi ,S does not depend on Si .
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ONLINE COUNTERPART FOR NON IID DATA

Remark
The previous bound if vacuous if K = m (online setting)

Solution
The same set of technique allows a refined bound for online learning (see Vial-
lard et al., 2023, Theorems 3&4)

Why is it great?
• Zero assumption about the data distribution
• Still valid for heavy tailed losses
• Consider a sequence of priors/posteriors → more flexible.
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NEW OPTIMISATION GOALS

Batch

argminhw∈H

{
R̂S(hw) + ε

[
K∑
i=1

|Si |
m

∥w−wi∥2

]}
.

Online

∀i ≥ 1, hi ∈ argminhw∈H ℓ(hw, zi ) + ∥w−wi−1∥
s.t. ∥w−wi−1∥ ≤ 1.
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EXPERIMENTS

Classification problem on MNIST solved with linear models and fully connected
neural networks.
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Thank you for your attention!
Questions?



REFERENCES

John Shawe-Taylor and Robert Williamson. A PAC Analysis of a Bayesian Estimator. COLT. (1997).

David McAllester. Some PAC-Bayesian Theorems. COLT. (1998).

David McAllester. Some PAC-Bayesian Theorems. Machine Learning. (1999).

Andreas Maurer. A Note on the PAC Bayesian Theorem. CoRR. cs.LG/0411099. (2004).

Cédric Villani et al. Optimal transport: old and new. Vol. 338. Springer. (2009).

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approximations
of Gibbs posteriors. Journal of Machine Learning Research. (2016).

Gintare Karolina Dziugaite and Daniel Roy. Computing Nonvacuous Generalization Bounds for Deep
(Stochastic) Neural Networks with Many More Parameters than Training Data. UAI. (2017).



REFERENCES

Gintare Karolina Dziugaite and Daniel Roy. Data-dependent PAC-Bayes priors via differential
privacy. NeurIPS. (2018).

Benjamin Guedj. A Primer on PAC-Bayesian Learning. CoRR. abs/1901.05353. (2019).

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. CoRR. abs/2110.11216. (2021).

Maŕıa Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter Risk
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