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About Online Learning

Online learning is about to find a way for our algorithm to learn
while dealing with an extremely huge amount of data.

When we can not manage the whole dataset at once: treat data
sequentially.
The goal is then to learn simultaneously than this data arrival.

That is online learning (OL)!
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Online Learning vs Batch Learning

OL differs from batch learning

Batch learning widely used in ML: you make your algorithm learn
over the full dataset (seen as a batch) over several epochs.

Problem: if too many data available our algorithm cannot learn
efficiently on reasonable time!

Problem 2: If our learning goal moves through time: all our training
is useless!
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A classical framework in OL

A predictor space H.

An environment Z. At time i , the environment sends a data zi drawn
under un unknown distribution µi .

A sequence of loss functions (`i)i>1. At time i , one wants to
produce a good predictor hi+1 ∈ H s.t. `i+1(hi+1) is small.

Question: how do we produce such good predictors?
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A celebrated algorithm

Online Gradient Descent

Onto a closed convex K, OGD produces predictors from an initial h1 as
follows:

∀i > 1, hi+1 = ΠK (hi −∇`i(hi))

Question: how to measure its efficiency?
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Regrets

Definition

The static regret of a decision sequence (ht)t>0 at time T as:

RegretT :=

T∑
t=1

`t(ht) − inf
h∈H

T∑
t=1

`t(h)

The dynamic regret is defined as:

Dyn − RegretT :=

T∑
t=1

`t(ht) −

T∑
t=1

inf
h∈H

`t(h)



(Our) regrets

The regret compares the quality of our predictions wrt the best
strategy.

Interest of this approach: allows us to exploit tools from convex
optimisation

Can we work beyond convex losses?

Yes, thanks to
PAC-Bayesian theory.
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What is PAC-Bayes learning?

A branch of learning theory

Emerged in the late 90s with the works of Shawe-Taylor and
Williamson, 1997 and McAllester, 1998, 1999.

Technical tools: measure theory, concentration inequalities,
information theory. Also Catoni, 2007 used tools from statistical
physics

For more precision see the recent surveys of:

1 Alquier 2021: https://arxiv.org/abs/2110.11216

2 Guedj 2019: https://arxiv.org/abs/1901.05353
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Terminology

The two terms ’PAC’ and ’Bayes’ stand for the following.

PAC is the acronym of ’Probably Approximately Correct’.

’Bayes’ says that we take inspiration from the Bayesian philopsophy.

Indeed, PAC-Bayesian theory aims to construct distributions over
the predictor space instead of a single point. It also exploits the idea
of building a posterior distribution from a prior one (without using
Bayes formula).



Terminology

The two terms ’PAC’ and ’Bayes’ stand for the following.

PAC is the acronym of ’Probably Approximately Correct’.

’Bayes’ says that we take inspiration from the Bayesian philopsophy.
Indeed, PAC-Bayesian theory aims to construct distributions over
the predictor space instead of a single point. It also exploits the idea
of building a posterior distribution from a prior one (without using
Bayes formula).



An usual framework

A learning problem is specified by tuple (H,Z, `) where:

H is the space of considered predictors

Z is the data space. z can be an unlabeled data x or a couple (x , y)
of a point with its label. We assume that µ is a distribution over Z
which rules the distribution of our data.

` : H × Z→ R+ is a loss function i.e. the learning objective we
want to minimise.



An usual framework (2)

S = (z1, ...zm) an iid dataset following µ.

The generalisation risk for h ∈ H: R(h) = Ez∼µ[`(h, z)].

The empirical risk Rm(h) = 1
m

∑m
i=1 `(h, zi).



What does PAC-Bayes do?

PAC-Bayes theory aims to design a meaningful distribution Q over H.
A classical PAC-Bayes bound controls the expected generalisation error:

Eh∼Q[R(h)] := Eh∼QEz∼µ[`(h, z)]

with regards to the expected empirical error:

Eh∼Q[Rm(h)] := Eh∼Q

[
1
m

m∑
i=1

`(h, zi)

]



McAllester’s bound

Assumptions: ` ∈ [0, 1], iid data, data-free prior

Theorem

For any prior distribution P, we have with probability 1 − δ over the
m-sample S, for any posterior distribution Q such that Q � P:

Eh∼Q [R(h)] 6 Eh∼Q [Rm(h)] +

√
KL(Q,P) + log(2

√
m/δ)

2m
,

where KL is the Kullback-Leibler divergence.



Our framework

We stay close from the PAC-Bayes learning framework:

A data space Z, a predictor space H.

A sample S = (z1, ..., zm). No assumptions about the data
distribution.

(Fi)i>0 is an adapted filtration to S.

A loss ` : H × Z→ R+. ` is bounded by K > 0.
Analogy with OL: `(., zi)→ `i(.).
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Our framework (2)

A sequence (Pi)i>1 of priors verifying:

Definition

We say that a sequence of distributions (Pi)i=1..m is an online
predictive sequence if (i) for all i > 1,Pi is Fi−1 measurable and (ii) for
all i > 2, Pi � Pi−1 where Q � P denotes the absolute continuity of Q
w.r.t. P.

Our priors can depend on the past!
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Our main theorem

Theorem

For any distribution µ over Zm, any λ > 0 and any online predictive
sequence (used as priors) (Pi), for any posterior sequence (Qi) the
following holds with probability 1 − δ over the sample S ∼ µ :

m∑
i=1

Ehi∼Qi [E[`(hi , zi) | Fi−1]]

6
m∑

i=1

Ehi∼Qi [`(hi , zi)] +
KL(Qi‖Pi)

λ
+
λmK 2

2
+

log(1/δ)
λ

.



Analysis

The controlled term is hybrid between OL and PAC-Bayes.

The sum: close to the OL philosophy to take into account moving
objectives.

The conditional expectation: a dynamic generalisation error from
PAC-Bayes world: at each time step, how good are we on average?

A sum of clasical PAC-Bayesian quantities appears on the right
hand side =⇒ towards an optimisation procedure?
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Sketch of the proof: background
Main technical tool: sotchastic kernels of Rivasplata et al. 2020.

Definition (Stochastic kernels)

A stochastic kernel from S = Zm to H is defined as a mapping
Q : Zm × ΣH → [0; 1] where

For any B ∈ ΣH, the function s = (z1, ..., zm) 7→ Q(s,B) is
measurable,

For any s ∈ Zm, the function B 7→ Q(s,B) is a probability measure
over H.

We denote by Stoch(S,H) the set of all stochastic kernels from S to H

and for a fixed S, we set QS := Q(S, .) the data-dependent prior
associated to the sample S through Q.



Sketch of the proof: background (2)

Theorem

Let µ ∈M1(S), Q0 ∈ Stoch(S,F). Let k be a positive integer, any
A : S×H→ Rk a measurable function and F : Rk → R be a convex
function . Then for any Q ∈ Stoch(S,F) and any δ ∈ (0, 1), with
probability at least 1 − δ over the random draw of S ∼ µ we have

F (QS [AS]) 6 KL
(
QS‖Q0

S

)
+ log(ξm/δ).

where ξm :=
∫
S

∫
H ef(s,h)Q0

s (dh)P(ds) and
QS[AS] := QS[A(S, .)] =

∫
H A(S, h)QS(dh).



Sketch of the proof: Framework

Main idea: exploit the last theorem by taking for predictor space
Hm := H⊗m instead of H.

Thus, our predictor h is a tuple (h1, .., hm) ∈ H. Throughout our study,
our stochastic kernels Q,Q0 will belong to the specific class C defined
below:

C := {Q | ∃(Qi)i=1..m ∀S, s.t. Q(S, .) = Q1(S)⊗ ...⊗ Qm(S)} (1)
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Sketch of the proof: framework

A(S, h) =

(
m∑

i=1

E[`(hi , zi) | Fi−1],
m∑

i=1

`(hi , zi)

)
and F (x , y) = λ(x − y)

for P = (P1, ...Pm) our online predictive sequence, Q0 ∈ C s.t.
Q0

S = P1(S)⊗ ...⊗ Pm(S).
We define QS similarly for the posteriors Q1, ...,Qm

(QS = Q1(S)⊗ ...⊗ Qm(S)) .
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Sketch of the proof

F (QS[AS]) = λ

(
m∑

i=1

Ehi∼Qi [E [`(hi , zi) | Fi−1]] −

m∑
i=1

Ehi∼Qi [`(hi , zi)]

)

and applying Rivasplata et al. bound gives:

m∑
i=1

Ehi∼Qi [E[`(hi , zi) | Fi−1]]

6
m∑

i=1

Ehi∼Qi [`(hi , zi)] +
KL(QS‖Q0

S)

λ
+

log(ξm/δ)

λ



Sketch of the proof

And KL(QS‖Q0
S) =

∑m
i=1 KL(Qi‖Pi) thanks to the definition of our

kernels. Then the last term to control is:

ξm = ES

[
Eh1,...,hm∼Q0

S

[
exp

(
λ

m∑
i=1

˜̀i(hi , zi)

)]]

with ˜̀i(hi , zi) = E[`(hi , zi) | Fi−1] − `(hi , zi).



Sketch of the proof

Lemma

One has for any m, ξm 6 exp
(
λ2mK 2

2

)
with K bounding `.

Hence the final result!



Online PAC-Bayesian (OPB) training bound

OPBTRAIN

For any distribution µ over Zm, any λ > 0 and any online predictive
sequences Q̂,P, the following holds with probability 1 − δ over the
sample S ∼ µ :

m∑
i=1

Ehi∼Q̂i+1
[E[`(hi , zi) | Fi−1]]

6
m∑

i=1

Ehi∼Q̂i+1
[`(hi , zi)] +

KL(Q̂i+1‖Pi)

λ
+
λmK 2

2
+

log(1/δ)
λ

.



Optimisation procedure
For a data stream S = {z1, ..., zm}, a fixed a scale parameter λ > 0 and
an online predictive sequence Pi :

Q̂1 = P, ∀i > 1 Q̂i+1 = argminQ Ehi∼Q [`(hi , zi)] +
KL(Q‖Pi)

λ
(2)

which leads to the explicit formulation

dQ̂i+1

dPi
(h) =

exp (−λ`(h, zi))

Eh∼Pi [exp (−λ`(h, zi))]
. (3)

Thus, the formulation of Eq. 3, which has been highlighted by Catoni
shows that our online procedure produces Gibbs posteriors.
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Analysis

In the training bound: impacting right hand-side as it provides our
OPB algorithm.

Left hand side: expresses how the posterior Q̂i+1 generalises well
on average to any new draw of zi .

More precisely, this term measures how much the training of Q̂i+1 is
overfitting on zi . A low value of it ensures our procedure is robust to
the randomness of S, hence the interest of optimising the right hand
side of the bound.
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An OPB test bound
Our training bound does not say if Q̂i+1 will produce good predictors to
minimise `(., zi+1), which is the objective of Q̂i+1 in the OL framework.
This is the goal of our next theorem.

Corollary (OPBTEST)

For any distribution µ over Zm, any λ > 0, and any online predictive
sequence (Q̂i), the following holds with probability 1 − δ over the sample
S ∼ µ:

m∑
i=1

Ehi∼Q̂i
[E[`(hi , zi) | Fi−1]] 6

m∑
i=1

Ehi∼Q̂i
[`(hi , zi)] +

λmK 2

2
+

log(1/δ)
λ

.



Analysis

This leads to the (empirical) optimal rate of∑m
i=1 Ehi∼Q̂i

[`(hi , zi)] + O(
√

m log(1/δ)).

NB: if we want a guarantee valid for any time T of our procedure→
union bound→ O(

√
m log(m/δ)).

the cost of a more precise control of the behavior of the OPB
algorithm at each time step is

√
log(m)
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An issue with the OPB algroithm.

A legitimate criticism to OPB learning: Gibbs posterior can be costful to
implement given the need to estimate an expenential moment at each
time step.
Can we overcome this difficulty

The answer is Yes! Thans to disintegrated PAC-Bayes bounds.



An issue with the OPB algroithm.

A legitimate criticism to OPB learning: Gibbs posterior can be costful to
implement given the need to estimate an expenential moment at each
time step.
Can we overcome this difficulty
The answer is Yes! Thans to disintegrated PAC-Bayes bounds.



A general Online PAC-Bayes Disintegrated (OPBD)
training bound

A general shape for OPBD training bounds

For any online predictive sequences Q̂,P, any λ > 0 w.p. 1 − δ over
S ∼ µ and (h1, ..., hm) ∼ Q̂2 ⊗ ...⊗ Q̂m+1:

m∑
i=1

E[`(hi , zi) | Fi−1] 6
m∑

i=1

`(hi , zi) + Ψ(hi , Q̂i+1,Pi) +Φ(m), (4)

with Ψ,Φ being real-valued functions. Ψ controls the global behaviour of
Qi+1 w.r.t. the Fi−1-measurable prior Pi . If one has no dependency on hi

this behaviour is global, otherwise it is local.



A general OPBD algorithm for Gaussian measures

The idea of using Gaussian measures comes from Viallard, 2021.
The reason: a Gaussian variable h ∼ N(w ,σ2Id) can be written as
h = w + ε with ε ∼ N(0,σ2Id), and this totally defines h.
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Two concrete pairs (Ψ,Φ).
Corollary

For any Q̂i = N(ŵi ,σ
2Id) and Pi = N(w0

i ,σ
2Id), any λ > 0, w.p. 1 − δ

over S ∼ µ and (hi = ŵi+1 + εi)i=1..m ∼ Q̂2 ⊗ ...⊗ Q̂m+1, the bound of
Eq. 4 holds for:

Ψ1(hi , ŵi+1,w0
i ) =

1
λ

(
||ŵi+1 + εi − w0

i ||
2 − ||ε||2

2σ2

)
Φ1(m) =

λmK 2

2
+

log(1/δ)
λ

,

Ψ2(hi , ŵi+1,w0
i )) =

1
λ

||ŵi+1 − w0
i ||

2

2σ2 Φ2(m) = λmK 2 +
3 log(1/δ)

2λ
.



OPBD test bounds

General shape

For any online predictive sequence Q̂, any λ > 0 w.p. 1 − δ over S and
(h1, ..., hm) ∼ Q̂1 ⊗ ...⊗ Q̂m:

m∑
i=1

E[`(hi , zi) | Fi−1] 6
m∑

i=1

`(hi , zi) +Φ(m), (5)

with Φ being a real-valued function(possibly dependent on λ, δ though it
is not explicited here).



Two concrete OPBD test bounds

Corollary

For any λ > 0, and any online predictive sequence (Q̂i), the following
holds with probability 1 − δ over the sample S ∼ µ and the predictors
(h1, ..., hm) ∼ Q̂1 ⊗ ...⊗ Q̂m, the bound of Eq. 5 holds with :

Φ1(m) =
λmK 2

2
+

log(1/δ)
λ

, Φ2(m) = 2λmK 2 +
log(1/δ)

λ
.

The optimised λ gives in both cases a O(
√

m log(1/δ).



Experiments



What this talk could have also been about

1 PAC-Bayes beyond bounded losses
(https://www.mdpi.com/1099-4300/23/10/1330 )

2 PAC-Bayes for kernel PCA (https://arxiv.org/abs/2012.10369, to be
updated)

3 Optimistic adaptation of classical online algorithms (online soon!)

https://www.mdpi.com/1099-4300/23/10/1330


Thank you for listening !
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