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SÉMINAIRE SO

Maxime Haddouche

Inria Paris

Mardi 4 Février 2025

1/34



SUMMARY

1. Introduction to PAC-Bayes Learning

2. PAC-Bayes with Weak Statistical Assumptions

3. Involving Flat Minima in PAC-Bayes

2/34



A LEARNING THEORY RECAP

What is a learning theory problem?
A tuple (Z,H, ℓ): a data space Z , a predictor space h ∈ H, a
mathematically well-defined problem ℓ : H×Z → R

What is our goal?

We have access to a m-sized training set Sm = {z1, · · · , zm}. We
aim to learn the best h⋆ ∈ H to answer ℓ in a certain way

• Optimisation: minimise the empirical risk
h⋆ ∈ argminh∈H R̂Sm

(h) := 1
m

∑m
i=1 ℓ(h, zi)

• Generalisation: if Sm ∼ D⊗m, minimise the theoretical risk
h⋆ ∈ argminh∈H RD(h) := Ez∼D[ℓ(h, z)]
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A FIRST EXAMPLE

Supervised learning with linear classifiers:
• Z = Rk × Y with Y = {−1, 1}
• Loss ℓ(h, (x, y)) = 1{h(x) ̸= y}
• Linear classifiers: H := {hθ(x) = sgn(⟨θ, x⟩)}, where sgn(a)

denotes the sign of a.

It may be hard to find directly the best h for complex
predictor classes (eg neural nets). What could we do?
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PAC-BAYES LEARNING

PAC-Bayes: Find the best distribution over H !

Learning a posterior Q over models from m data and a prior distribution P

h1

h2

h3

Prior distribution P

Learning

0.000

0.167

0.333

0.500

0.667

0.833

1.000

h4
h5

Posterior distribution Q Loss

PAC-Bayesian generalisation bounds in a nutshell
With probability at least 1− δ

performance gap(Q) ≤ bound
(

complexity(Q,P), 1
m , ln 1

δ

)
.

Image from Paul Viallard.
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SETTING

Notations:
• Predictor/hypothesis h ∈ H, Data space Z
• Loss ℓ : H×Z → R,
• Countable learning sample S = (zi)i≥1 ∈ ZN, with distribution DS

• Sm: Restriction of S to m first points with distribution Dm

• Space of distributions over H: M(H)

• Posterior and prior distribution Q,P ∈ M(H)2

• If Sm ∼ Dm i.i.d., Risks: RD(h) = Ez∼D ℓ(h, z), R̂Sm(h) =
1
m

∑m
i=1 ℓ(h, zi)

• Expected risks RD(Q) = E
h∼Q

[RD(h)], R̂Sm(Q) = E
h∼Q

[R̂Sm(h)]

6/34



A FUNDAMENTAL RESULT: MCALLESTER’S BOUND

McAllester’s bound (Maurer’s improvement) Maurer (2004, Theorem 5) (ℓ ∈ [0, 1])

For any P ∈ M(H), with probability 1−δ over Sm ∼ Dm, for any Q ∈ M(H),

RD(Q) ≤ R̂Sm(Q) +

√
KL(Q,P) + ln 2

√
m
δ

2m
,

where KL(Q,P) = Eh∼Q

[
dQ
dP (h)

]
.

No explicit dependency in the dimension of the problem (hidden in the KL term):
positive phenomenon can be caught with the right priors (e.g. sparsity).
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A SIMPLE ROUTE OF PROOF

Step 1: A key ingredient: change of measure inequality

For any function f , any Q ≪ P:

E
h∼Q

[f(h)]− ln

(
E

h∼P
[exp ◦f(h)]

)
≤ KL(Q,P).

Step 2: Markov’s inequality

With probability at least 1− δ:

E
h∼P

[exp ◦f(h)] ≤ 1

δ
E
Sm

[
E

h∼P
[exp ◦f(h)]

]
,

=
1

δ
E

h∼P

[
E
Sm

[exp ◦f(h)]
]
. (P data-free + Fubini)
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A SIMPLE ROUTE OF PROOF (2)

Step 3: Choosing the right f .

Take f(h) = m kl
(

RD(h), R̂Sm(h)
)

(kl= KL of Bernoullis).
Then Maurer (2004): for any h, loss in [0, 1]:

E
Sm

[exp ◦f(h)] ≤ 2
√
m

To conclude: kl(p, q) ≥ 2(p− q)2.
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A SECOND KEY RESULT: CATONI’S BOUND

Catoni’s bound Alquier et al. (2016, Theorem 4.1) (ℓ σ-subgaussian)

For λ > 0, P ∈ M(H), with probability 1−δ over Sm ∼ Dm, for any Q ∈ M(H),

RD(Q) ≤ R̂Sm(Q) +
KL(Q,P) + ln 1

δ

λ
+

λσ2

2m
.
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FROM BOUNDS TO ALGORITHMS

Previous bounds: both fully empirical → optimisation in Q is feasible on C ⊆ M(H) !

McAllester QM := argmin
Q∈C

R̂Sm(Q) +

√
KL(Q,P)

2m
.

For any λ > 0,

Catoni QC := argmin
Q∈C

R̂Sm(Q) +
KL(Q,P)

λ
.

If C = M(H), a Gibbs posterior P−λR̂Sm
is the explicit minimiser of Catoni’s bound:

dP−λR̂Sm
(h) =

exp(−λR̂Sm(h))

Eh∼P[exp(−λR̂Sm(h))]
dP(h).
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PRACTICAL INSTANTIATION

Quick sum up

PAC-Bayes algorithms minimise theoretical bounds → sound theoretical guarantees
comes with our posterior.

Drawbacks Often hard to optimise on M(H), and Gibbs
posterior implementation is time-consuming.

Questions:
• How are those algorithms instantiated in practice?
• Are these algorithms efficient and do they come with

non-vacuous theoretical guarantees?
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COMMON PRACTICES

Instantiation
• Use of multiple data-free priors (grid + union bounds)
• Sacrifice some part of the data to train the prior.
• C is often a set of Gaussians (closed form of the KL)

Efficiency
• Non-vacuous generalisation guarantees attainable for small deep nets (Dziugaite

et al., 2017 and following works)
• Faster convergence rates via small variance (Tolstikhin et al., 2013)
• When vacuous, use of PAC-Bayes bounds as correlation measures for

generalisation (Neyshabur et al., 2017)
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TAKE HOME MESSAGES

In 20+ years of development:
• Inspiration from the Bayesian paradigm
• Little attention on statistical assumptions (i.i.d. data, subgaussian losses) except

few works e.g. (Seldin et al., 2012; Kuzborskij et al., 2019).
• Priors and posteriors are designed w.r.t. to the KL divergence: either Gibbs

(closed form) or Gaussian (computation)

Can we weaken the statistical assumption on the loss?

Yes: we can extend Catoni’s bound for any countable
dataset S and finite variance assumption
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A PAC-BAYESIAN BOUND FOR UNBOUNDED MARTINGALES

Theorem
For any data-free prior P ∈ M(H), any λ > 0, any collection of martingales
(Mm(h))m≥1 indexed by h ∈ H, the following holds with probability 1−δ over the
sample S = (zi)i∈N, for all m ∈ N/{0}, Q ∈ M(H):

|Mm(Q)| ≤ KL(Q,P) + log(2/δ)

λ
+

λ

2
([M ]m(Q) + ⟨M⟩m(Q)) .

Required: finiteness of ([Mm], ⟨M⟩m)m≥1 (variance terms)

Toolbox: Ville’s inequality and supermartingales
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INSTANTIATION

Corollary
For any data-free prior P ∈ M(H), any λ > 0, the following holds with probability
1− δ over the sample S = (zi)i∈N, for all m ∈ N/{0}, Q ∈ M(H)

Eh∼Q[R(h)] ≤ Eh∼Q

[
R̂Sm(h) +

λ

2m

m∑
i=1

(ℓ(h, zi)− RD(h))
2

]

+
KL(Q,P) + log(2/δ)

λm
+

λ

2
Eh∼Q [V arD(h)] ,

where V arD(h) is the variance of ℓ(h, ·).

Interesting property: time-uniform bound.
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A TIGHTER BOUND FOR NON-NEGATIVE LOSSES

In Chugg et al. (2023): tighter bound for nonnegative loss:

Corollary
For ℓ ≥ 0, any data-free prior P ∈ M(H), any λ > 0, the following holds with
probability 1− δ over the sample S = (zi)i∈N, for all m ∈ N/{0}, Q ∈ M(H)

Eh∼Q[R(h)] ≤ Eh∼Q

[
R̂Sm(h)

]
+

KL(Q,P) + log(2/δ)

λm
+

λ

2
Eh∼Q

[
ℓ(h, z)2

]
,
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TAKE-HOME MESSAGE

We can recover Catoni’s bound at the sole price of uniformly
bounded variance. We also reached time-uniform
generalisation bounds

Drawback: those bounds holds for any Q and D
simultaneously. Gastpar et al. (2023) showed such bounds
were limited in the overparametrised setting.

Question: can we incorporate some benefits of a successful
learning process in such bounds?
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FLAT MINIMUM

Yes for flat minima !!
What is a flat minimum?
A minimum such that its neighbourhood nearly minimises the loss.

Image from liebenwein2021sparse.
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FLAT MINIMA AND GENERALISATION ARE CORRELATED!

Correlations with generalisation recently emerged:

• Flat minima of R̂S .
PAC-Bayes based correlation measure : works for many datasets (Neyshabur
et al., 2017; Dziugaite et al., 2020; Jiang et al., 2020)

• Flat minima of the adversarial loss in the context of adversarially robust learning.
(Stutz et al., 2021)

• Flat minima implies generalisation for 2-layers nets (Wen et al., 2023).

Can we go beyond correlation or 2-layers net and obtain sound generalisation
bounds involving directly flat minima?
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ESSENTIAL TOOLS: POINCARÉ AND LOG-SOBOLEV INEQUALITIES

Notation: for any Q, H1(Q) :=
{
f ∈ L2(Q) ∩D1(Rd) | ∥∇f∥ ∈ L2(Q)

}
Poincaré
Q is Poinc(cP ) if for all f ∈ H1(Q):

Var(f) ≤ cP (Q) E
h∼Q

[
∥∇f(h)∥2

]
,

Log-Sobolev

Q is L-Sob(cLS) if for all function f ∈ H1(Q):

E
h∼Q

[
f2(h) log

(
f2(h)

Eh∼Q [f2(h)]

)]
≤ cLS(Q) E

h∼Q

[
∥∇f(h)∥2

]
,

Gaussian distributions and Gibbs posteriors are Poinc and L-Sob!
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GENERALISATION BOUNDS FOR FLAT MINIMA (1)

Notation: Err(ℓ,Q, z) := Eh∼Q[ℓ(h, z)]

Assumption

Q ∈ M(H) is quadratically self-bounded w.r.t. ℓ and C > 0 (namely QSB(ℓ, C)) if

Ez∼D
[
Err(ℓ,Q, z)2

]
≤ CRD(Q) (= CEz∼D [Err(ℓ,Q, z)])

• QSB intricates D ∈ M(Z) with Q ∈ M(H)

• Satisfied if ℓ ∈ [0,K] with C = K.

• Also satisfied for unbounded lipschitz losses in a certain setting.
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IS THE QSB ASSUMPTION VERIFIED IN PRACTICE?

QSB holds for 3-layer neural nets trained on MNIST (black curve)!

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

MNIST

0 2000 4000 6000 8000 10000
Iterations

0.2

0.4
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Value of C Test risk - 01-loss Test risk - Bounded cross entropy loss
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GENERALISATION BOUNDS VIA FLAT MINIMA (2)

Theorem
For any C > 0, data-free prior P, with probability at least 1− δ for any m > 0, and Q
being Poinc(cP ), QSB(ℓ, C),

RD(Q) ≤ 2R̂S(Q) + 2C
KL(Q,P) + log(1/δ)

m
+

1

C
cP (Q) E

z∼D

[
E

h∼Q

(
∥∇hℓ(h, z)∥2

)]
.

If D is also Poinc:
With more minor technical assumptions, for any Q being Poinc(cP ) with RD(Q) ≤ C:

RD(Q) ≤ 2R̂S(Q) + 2C
KL(Q,P) + log(1/δ)

m

+
1

C

(
cP (Q) E

z∼D

[
E

h∼Q

(
∥∇hℓ(h, z)∥2

)]
+ cP (D) E

z∼D

(∥∥∥∥ E
h∼Q

[∇zℓ(h, z)]

∥∥∥∥2
))

.
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FULLY EMPIRICAL FAST RATE

Drawback: bounds are not empirical.

Solution: C2 gradient-lipschitz losses!
Theorem
For any C1, C2, c > 0, with probability at least 1− δ, for any m > 0, Q being Poinc(cP )
with constant c, QSB(ℓ, C1), QSB

(
∥∇hℓ∥2, C2

)
,

RD(Q) ≤ 2R̂S(Q) +O

(
E

h∼Q

[
1

m

m∑
i=1

∥∇hℓ(h, zi)∥2
]
+

KL(Q,P) + log(1/δ)

m

)
.
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TAKE-HOME MESSAGES

If Q satisfies either
1 Flat minima for R̂S and RD,
2 if ℓ gradient-lipschitz, flat minima for R̂S and small gradient

norms on each training data,
then Q generalises well!
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GIBBS POSTERIORS

Drawback: with Poincaré posteriors, KL is uncontrolled.

Solution: Gibbs posterior with log-Sobolev priors!
Definition
P−γR̂S

is the Gibbs posterior w.r.t. prior P with inverse temperature γ > 0 if

dP−γR̂S
(h) ∝ exp

(
−γR̂S(h)

)
dP (h)

.

Why focus on those?

• Minimise Catoni’s bound
• if P L-Sob(+ technical assumptions) and ℓ = ℓ1 + ℓ2 (ℓ1 convex, twice differentiable,

ℓ2 bounded) then P−γR̂S
is L-Sob.
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UNDERSTANDING GIBBS POSTERIORS THROUGH FLAT MINIMA

Theorem
For any C > 0, any γ > 0, any prior P L-Sob(cLS) (+ technical assumptions), if
ℓ = ℓ1 + ℓ2 (as above), then with probability at least 1− δ, for any m > 0, Q being
QSB(ℓ, C):

RD(P−γR̂S
) ≤ 2R̂S(P−γR̂S

)+

O

C
γ2 Eh∼P−γR̂S

[
∥∇hR̂S(h)∥2

]
+ log(1/δ)

m
+

1

C
E

z∼D

[
E

h∼P−γR̂S

(
∥∇hℓ(h, z)∥2

)] .

KL small if a flat minima on R̂S is reached
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TAKE-HOME MESSAGES

1 Gibbs posterior generalises well if they reach a flat minima
on both R̂S and RD.

2 Flatness of the minimum on R̂S controls the expansion of KL.
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RESULT FOR DETERMINISTIC PREDICTORS

Drawback: results hold for probabilistic predictors

Answer: Exploit the 2-Wasserstein distance to obtain
guarantees valid for deterministic predictors (Diracs)
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A NEW CHANGE OF MEASURE INEQUALITY

Key tool: a novel change of measure inequality

For any f gradient lipschitz, any P,Q:

Eh∼Q[f(h)] ≤
G

2
W 2

2 (Q,P ) + Eh∼P[f(h)] +DEh∼Q[∥∇f(h)∥].

NB: a variant of this formula with a KL is attainable if Q << P and P is L-Sob !

Assumption

• A relaxation of gradient-lipschitz loss.
• P ∝ exp(−V (h))dh
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RESULT

Theorem
Let δ ∈ (0, 1) and P ∈ M(H) a data-free prior. Assume H has a finite diameter D > 0,
ℓ ≥ 0 and that for any m, the generalisation gap ∆Sm is G gradient-Lipschitz. Assume
that Eh∼PEz∼D[ℓ(h, z)

2] ≤ σ2, then the following holds with probability at least 1− δ,
for any m > 0 and any Q:

RD(Q) ≤ R̂Sm(Q) +
G

2
W 2

2 (Q,P) +

√
2σ2 log

(
1
δ

)
m

+DEh∼Q

(∥∥∥∇hRD(h)−∇hR̂Sm(h)
∥∥∥)
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CONCLUSION

• We mathematically quantify the impact of flat minima in
generalisation!

• The QSB condition is verified on basic neural nets
(classification) with constant C sharper than 1!

• A crucial future lead: understanding why optimisation
procedures on deep nets lead to flat minima: here, we are
only able to explain why flat minima generalise well, not
how we reach them.

Full paper available at https://arxiv.org/abs/2402.08508
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